tag_string
stringlengths
1
162
tag_type
stringclasses
5 values
tag_count
int64
1
3.95M
__index_level_0__
int64
0
687k
1girl
general
3,953,414
2,590
highres
meta
3,485,542
208,800
solo
general
3,289,051
555,475
long_hair
general
2,863,563
328,141
breasts
general
2,285,804
74,765
looking_at_viewer
general
2,193,273
328,444
commentary_request
meta
2,155,019
103,545
blush
general
1,927,877
70,635
smile
general
1,895,571
552,682
open_mouth
general
1,562,956
441,458
short_hair
general
1,493,955
543,412
shirt
general
1,214,795
541,419
simple_background
general
1,199,767
548,065
absurdres
meta
1,187,944
10,035
blue_eyes
general
1,159,094
69,879
large_breasts
general
1,046,501
315,763
skirt
general
1,019,199
550,747
long_sleeves
general
1,009,164
328,201
blonde_hair
general
1,008,259
69,098
multiple_girls
general
1,005,708
393,548
black_hair
general
991,608
67,402
white_background
general
990,275
644,124
brown_hair
general
979,555
75,887
hair_ornament
general
936,392
191,080
1boy
general
921,716
2,549
commentary
meta
913,017
103,544
holding
general
893,366
216,991
gloves
general
878,852
178,121
dress
general
840,536
130,500
red_eyes
general
837,516
482,790
hat
general
784,939
200,487
navel
general
781,083
409,266
hair_between_eyes
general
774,955
191,018
bad_id
meta
774,769
55,674
bow
general
771,344
73,684
animal_ears
general
769,190
32,912
closed_mouth
general
767,884
100,560
original
copyright
764,183
443,039
thighhighs
general
750,251
597,249
ribbon
general
712,766
488,602
jewelry
general
706,190
249,197
cleavage
general
673,351
100,004
2girls
general
669,587
3,558
bare_shoulders
general
653,859
58,938
very_long_hair
general
627,718
633,665
sitting
general
620,694
549,871
jacket
general
612,497
245,278
bad_pixiv_id
meta
607,826
55,713
standing
general
595,125
563,166
twintails
general
594,518
617,669
medium_breasts
general
589,464
355,606
touhou
copyright
587,446
608,677
white_shirt
general
566,010
644,496
blue_hair
general
561,872
69,926
green_eyes
general
559,485
183,673
brown_eyes
general
555,525
75,871
nipples
general
540,169
420,195
collarbone
general
538,884
102,586
purple_eyes
general
530,979
471,755
full_body
general
527,696
164,667
school_uniform
general
521,690
520,469
tail
general
518,618
579,833
underwear
general
511,663
623,391
upper_body
general
508,099
624,980
swimsuit
general
483,146
575,861
closed_eyes
general
463,894
100,557
male_focus
general
462,588
342,116
white_hair
general
461,827
644,273
photoshop_(medium)
meta
461,439
457,471
multicolored_hair
general
457,721
393,431
yellow_eyes
general
457,432
661,257
pink_hair
general
455,663
459,397
grey_hair
general
447,861
184,372
ahoge
general
430,035
14,004
short_sleeves
general
427,710
543,438
purple_hair
general
423,638
471,773
flower
general
418,447
157,341
panties
general
415,692
450,484
braid
general
415,117
74,208
monochrome
general
415,029
385,863
sidelocks
general
407,957
546,165
ponytail
general
401,031
465,043
hair_ribbon
general
399,114
191,101
weapon
general
393,144
642,357
ass
general
389,645
47,526
thighs
general
378,347
597,259
heart
general
377,173
203,390
outdoors
general
375,571
446,672
cowboy_shot
general
372,057
106,238
bikini
general
368,476
65,379
earrings
general
367,046
133,452
:d
general
362,152
7,750
translated
meta
362,150
610,511
hetero
general
357,749
206,857
comic
general
355,685
103,215
translation_request
meta
352,858
610,514
sweat
general
352,091
575,473
hair_bow
general
349,064
191,026
red_hair
general
341,864
482,840
pantyhose
general
338,630
450,588

dataproc5/metrics-danbooru2025-alltime-tag-counts

Dataset Overview

tag_count provides aggregated tag usage statistics from the Danbooru2025 dataset. Each entry corresponds to a specific tag's usage count in all time.

import unibox as ub

df = ub.loads("hf://dataproc5/metrics-danbooru2025-monthly-tag-counts").to_pandas()
alltime_tag_counts = df.groupby(["tag_string", "tag_type"], as_index=False)["tag_count"].sum()
alltime_tag_counts = alltime_tag_counts.sort_values("tag_count", ascending=False)
ub.saves(alltime_tag_counts, "hf://dataproc5/metrics-danbooru2025-alltime-tag-counts", private=False)

Usage

Some example use cases of this metrics includes:

  • finding out the top-occuring character / artist tags for targeted finetunes
  • creating tag-balanced datasets
  • use as a weighted random tags generator

Columns

  • tag_string: The text of the tag (e.g., "landscape").

  • tag_count: The total occurrences of the tag in the entire Danbooru dataset

  • tag_type: The category of the tag:

    • "artist": Artist names.
    • "character": Character names.
    • "copyright": Copyrighted works or IPs.
    • "general": General descriptive tags.
    • "meta": Meta information tags.

Source Data

  • Derived from Danbooru2025 image metadata.
  • Tags are extracted from columns: tag_string_artist, tag_string_character, tag_string_copyright, tag_string_general, and tag_string_meta.

Visualization

Danbooru tag counts are highly unbalanced. using df["tag_count"].hist() barely gets anything. Here's a log-scaled vis for reference:

import matplotlib.pyplot as plt

# Plot histogram with log scale on the y-axis
plt.figure(figsize=(10, 6))
plt.hist(alltime_tag_counts["tag_count"], bins=100, log=True, edgecolor='black')
plt.title("Histogram of All-Time Tag Counts (Log Scale)")
plt.xlabel("Tag Count")
plt.ylabel("Log Frequency")
plt.grid(True)
plt.show()

image/png

Downloads last month
11

Collection including dataproc5/metrics-danbooru2025-alltime-tag-counts