meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
14.7 kB
"""
An implementation of GhostNet & GhostNetV2 Models as defined in:
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf
The train script & code of models at:
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py
"""
import math
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible
from ._builder import build_model_with_cfg
from ._efficientnet_blocks import SqueezeExcite, ConvBnAct
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
__all__ = ['GhostNet']
_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4))
class GhostModule(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
use_act=True,
act_layer=nn.ReLU,
):
super(GhostModule, self).__init__()
self.out_chs = out_chs
init_chs = math.ceil(out_chs / ratio)
new_chs = init_chs * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False),
nn.BatchNorm2d(new_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
def forward(self, x):
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.out_chs, :, :]
class GhostModuleV2(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
use_act=True,
act_layer=nn.ReLU,
):
super().__init__()
self.gate_fn = nn.Sigmoid()
self.out_chs = out_chs
init_chs = math.ceil(out_chs / ratio)
new_chs = init_chs * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False),
nn.BatchNorm2d(new_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.short_conv = nn.Sequential(
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(out_chs),
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False),
nn.BatchNorm2d(out_chs),
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.out_chs, :, :] * F.interpolate(
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest')
class GhostBottleneck(nn.Module):
""" Ghost bottleneck w/ optional SE"""
def __init__(
self,
in_chs,
mid_chs,
out_chs,
dw_kernel_size=3,
stride=1,
act_layer=nn.ReLU,
se_ratio=0.,
mode='original',
):
super(GhostBottleneck, self).__init__()
has_se = se_ratio is not None and se_ratio > 0.
self.stride = stride
# Point-wise expansion
if mode == 'original':
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer)
else:
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer)
# Depth-wise convolution
if self.stride > 1:
self.conv_dw = nn.Conv2d(
mid_chs, mid_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False)
self.bn_dw = nn.BatchNorm2d(mid_chs)
else:
self.conv_dw = None
self.bn_dw = None
# Squeeze-and-excitation
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None
# Point-wise linear projection
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False)
# shortcut
if in_chs == out_chs and self.stride == 1:
self.shortcut = nn.Sequential()
else:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_chs, in_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
nn.BatchNorm2d(in_chs),
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
shortcut = x
# 1st ghost bottleneck
x = self.ghost1(x)
# Depth-wise convolution
if self.conv_dw is not None:
x = self.conv_dw(x)
x = self.bn_dw(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# 2nd ghost bottleneck
x = self.ghost2(x)
x += self.shortcut(shortcut)
return x
class GhostNet(nn.Module):
def __init__(
self,
cfgs,
num_classes=1000,
width=1.0,
in_chans=3,
output_stride=32,
global_pool='avg',
drop_rate=0.2,
version='v1',
):
super(GhostNet, self).__init__()
# setting of inverted residual blocks
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported'
self.cfgs = cfgs
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
self.feature_info = []
# building first layer
stem_chs = make_divisible(16 * width, 4)
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False)
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem'))
self.bn1 = nn.BatchNorm2d(stem_chs)
self.act1 = nn.ReLU(inplace=True)
prev_chs = stem_chs
# building inverted residual blocks
stages = nn.ModuleList([])
stage_idx = 0
layer_idx = 0
net_stride = 2
for cfg in self.cfgs:
layers = []
s = 1
for k, exp_size, c, se_ratio, s in cfg:
out_chs = make_divisible(c * width, 4)
mid_chs = make_divisible(exp_size * width, 4)
layer_kwargs = {}
if version == 'v2' and layer_idx > 1:
layer_kwargs['mode'] = 'attn'
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs))
prev_chs = out_chs
layer_idx += 1
if s > 1:
net_stride *= 2
self.feature_info.append(dict(
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}'))
stages.append(nn.Sequential(*layers))
stage_idx += 1
out_chs = make_divisible(exp_size * width, 4)
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1)))
self.pool_dim = prev_chs = out_chs
self.blocks = nn.Sequential(*stages)
# building last several layers
self.num_features = prev_chs
self.head_hidden_size = out_chs = 1280
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True)
self.act2 = nn.ReLU(inplace=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity()
# FIXME init
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^conv_stem|bn1',
blocks=[
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None),
(r'conv_head', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
# cannot meaningfully change pooling of efficient head after creation
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act1(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x, flatten=True)
else:
x = self.blocks(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.conv_head(x)
x = self.act2(x)
x = self.flatten(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return x if pre_logits else self.classifier(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model: nn.Module):
out_dict = {}
for k, v in state_dict.items():
if 'total' in k:
continue
out_dict[k] = v
return out_dict
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
"""
Constructs a GhostNet model
"""
cfgs = [
# k, t, c, SE, s
# stage1
[[3, 16, 16, 0, 1]],
# stage2
[[3, 48, 24, 0, 2]],
[[3, 72, 24, 0, 1]],
# stage3
[[5, 72, 40, 0.25, 2]],
[[5, 120, 40, 0.25, 1]],
# stage4
[[3, 240, 80, 0, 2]],
[[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 0.25, 1],
[3, 672, 112, 0.25, 1]
],
# stage5
[[5, 672, 160, 0.25, 2]],
[[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1]
]
]
model_kwargs = dict(
cfgs=cfgs,
width=width,
**kwargs,
)
return build_model_with_cfg(
GhostNet,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True),
**model_kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv_stem', 'classifier': 'classifier',
**kwargs
}
default_cfgs = generate_default_cfgs({
'ghostnet_050.untrained': _cfg(),
'ghostnet_100.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'
),
'ghostnet_130.untrained': _cfg(),
'ghostnetv2_100.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'
),
'ghostnetv2_130.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'
),
'ghostnetv2_160.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'
),
})
@register_model
def ghostnet_050(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-0.5x """
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnet_100(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-1.0x """
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnet_130(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-1.3x """
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.0x """
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs)
return model
@register_model
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.3x """
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs)
return model
@register_model
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.6x """
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs)
return model