File size: 14,690 Bytes
e411e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
An implementation of GhostNet & GhostNetV2 Models as defined in:
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf
The train script & code of models at:
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py
"""
import math
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible
from ._builder import build_model_with_cfg
from ._efficientnet_blocks import SqueezeExcite, ConvBnAct
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
__all__ = ['GhostNet']
_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4))
class GhostModule(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
use_act=True,
act_layer=nn.ReLU,
):
super(GhostModule, self).__init__()
self.out_chs = out_chs
init_chs = math.ceil(out_chs / ratio)
new_chs = init_chs * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False),
nn.BatchNorm2d(new_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
def forward(self, x):
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.out_chs, :, :]
class GhostModuleV2(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
use_act=True,
act_layer=nn.ReLU,
):
super().__init__()
self.gate_fn = nn.Sigmoid()
self.out_chs = out_chs
init_chs = math.ceil(out_chs / ratio)
new_chs = init_chs * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False),
nn.BatchNorm2d(new_chs),
act_layer(inplace=True) if use_act else nn.Identity(),
)
self.short_conv = nn.Sequential(
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(out_chs),
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False),
nn.BatchNorm2d(out_chs),
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.out_chs, :, :] * F.interpolate(
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest')
class GhostBottleneck(nn.Module):
""" Ghost bottleneck w/ optional SE"""
def __init__(
self,
in_chs,
mid_chs,
out_chs,
dw_kernel_size=3,
stride=1,
act_layer=nn.ReLU,
se_ratio=0.,
mode='original',
):
super(GhostBottleneck, self).__init__()
has_se = se_ratio is not None and se_ratio > 0.
self.stride = stride
# Point-wise expansion
if mode == 'original':
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer)
else:
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer)
# Depth-wise convolution
if self.stride > 1:
self.conv_dw = nn.Conv2d(
mid_chs, mid_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False)
self.bn_dw = nn.BatchNorm2d(mid_chs)
else:
self.conv_dw = None
self.bn_dw = None
# Squeeze-and-excitation
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None
# Point-wise linear projection
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False)
# shortcut
if in_chs == out_chs and self.stride == 1:
self.shortcut = nn.Sequential()
else:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_chs, in_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
nn.BatchNorm2d(in_chs),
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
shortcut = x
# 1st ghost bottleneck
x = self.ghost1(x)
# Depth-wise convolution
if self.conv_dw is not None:
x = self.conv_dw(x)
x = self.bn_dw(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# 2nd ghost bottleneck
x = self.ghost2(x)
x += self.shortcut(shortcut)
return x
class GhostNet(nn.Module):
def __init__(
self,
cfgs,
num_classes=1000,
width=1.0,
in_chans=3,
output_stride=32,
global_pool='avg',
drop_rate=0.2,
version='v1',
):
super(GhostNet, self).__init__()
# setting of inverted residual blocks
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported'
self.cfgs = cfgs
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
self.feature_info = []
# building first layer
stem_chs = make_divisible(16 * width, 4)
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False)
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem'))
self.bn1 = nn.BatchNorm2d(stem_chs)
self.act1 = nn.ReLU(inplace=True)
prev_chs = stem_chs
# building inverted residual blocks
stages = nn.ModuleList([])
stage_idx = 0
layer_idx = 0
net_stride = 2
for cfg in self.cfgs:
layers = []
s = 1
for k, exp_size, c, se_ratio, s in cfg:
out_chs = make_divisible(c * width, 4)
mid_chs = make_divisible(exp_size * width, 4)
layer_kwargs = {}
if version == 'v2' and layer_idx > 1:
layer_kwargs['mode'] = 'attn'
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs))
prev_chs = out_chs
layer_idx += 1
if s > 1:
net_stride *= 2
self.feature_info.append(dict(
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}'))
stages.append(nn.Sequential(*layers))
stage_idx += 1
out_chs = make_divisible(exp_size * width, 4)
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1)))
self.pool_dim = prev_chs = out_chs
self.blocks = nn.Sequential(*stages)
# building last several layers
self.num_features = prev_chs
self.head_hidden_size = out_chs = 1280
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True)
self.act2 = nn.ReLU(inplace=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity()
# FIXME init
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^conv_stem|bn1',
blocks=[
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None),
(r'conv_head', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
# cannot meaningfully change pooling of efficient head after creation
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act1(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x, flatten=True)
else:
x = self.blocks(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.conv_head(x)
x = self.act2(x)
x = self.flatten(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return x if pre_logits else self.classifier(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model: nn.Module):
out_dict = {}
for k, v in state_dict.items():
if 'total' in k:
continue
out_dict[k] = v
return out_dict
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
"""
Constructs a GhostNet model
"""
cfgs = [
# k, t, c, SE, s
# stage1
[[3, 16, 16, 0, 1]],
# stage2
[[3, 48, 24, 0, 2]],
[[3, 72, 24, 0, 1]],
# stage3
[[5, 72, 40, 0.25, 2]],
[[5, 120, 40, 0.25, 1]],
# stage4
[[3, 240, 80, 0, 2]],
[[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 0.25, 1],
[3, 672, 112, 0.25, 1]
],
# stage5
[[5, 672, 160, 0.25, 2]],
[[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1]
]
]
model_kwargs = dict(
cfgs=cfgs,
width=width,
**kwargs,
)
return build_model_with_cfg(
GhostNet,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True),
**model_kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv_stem', 'classifier': 'classifier',
**kwargs
}
default_cfgs = generate_default_cfgs({
'ghostnet_050.untrained': _cfg(),
'ghostnet_100.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'
),
'ghostnet_130.untrained': _cfg(),
'ghostnetv2_100.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'
),
'ghostnetv2_130.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'
),
'ghostnetv2_160.in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'
),
})
@register_model
def ghostnet_050(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-0.5x """
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnet_100(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-1.0x """
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnet_130(pretrained=False, **kwargs) -> GhostNet:
""" GhostNet-1.3x """
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
return model
@register_model
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.0x """
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs)
return model
@register_model
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.3x """
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs)
return model
@register_model
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet:
""" GhostNetV2-1.6x """
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs)
return model
|