Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc +0 -0
- pytorch-image-models/timm/loss/asymmetric_loss.py +97 -0
- pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/_efficientnet_builder.py +576 -0
- pytorch-image-models/timm/models/_helpers.py +166 -0
- pytorch-image-models/timm/models/_manipulate.py +278 -0
- pytorch-image-models/timm/models/_pretrained.py +94 -0
- pytorch-image-models/timm/models/_prune.py +116 -0
- pytorch-image-models/timm/models/_pruned/efficientnet_b1_pruned.txt +1 -0
- pytorch-image-models/timm/models/focalnet.py +652 -0
- pytorch-image-models/timm/models/fx_features.py +4 -0
- pytorch-image-models/timm/models/gcvit.py +592 -0
- pytorch-image-models/timm/models/ghostnet.py +433 -0
- pytorch-image-models/timm/models/hardcorenas.py +156 -0
- pytorch-image-models/timm/models/helpers.py +7 -0
- pytorch-image-models/timm/models/hgnet.py +738 -0
- pytorch-image-models/timm/models/hiera.py +996 -0
- pytorch-image-models/timm/models/hieradet_sam2.py +635 -0
- pytorch-image-models/timm/models/hub.py +4 -0
- pytorch-image-models/timm/models/inception_next.py +445 -0
- pytorch-image-models/timm/models/inception_resnet_v2.py +341 -0
- pytorch-image-models/timm/models/inception_v3.py +458 -0
- pytorch-image-models/timm/models/inception_v4.py +325 -0
- pytorch-image-models/timm/models/layers/__init__.py +48 -0
- pytorch-image-models/timm/models/levit.py +997 -0
- pytorch-image-models/timm/models/mambaout.py +642 -0
pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc
ADDED
Binary file (5.07 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc
ADDED
Binary file (7.84 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc
ADDED
Binary file (4.19 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc
ADDED
Binary file (3.02 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc
ADDED
Binary file (3.26 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc
ADDED
Binary file (1.08 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc
ADDED
Binary file (1.58 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc
ADDED
Binary file (2.67 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc
ADDED
Binary file (12.3 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc
ADDED
Binary file (3.49 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc
ADDED
Binary file (3.09 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc
ADDED
Binary file (2.38 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc
ADDED
Binary file (2.42 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc
ADDED
Binary file (2.22 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc
ADDED
Binary file (7.07 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc
ADDED
Binary file (11.6 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc
ADDED
Binary file (3 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc
ADDED
Binary file (1.73 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc
ADDED
Binary file (1.53 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc
ADDED
Binary file (3.3 kB). View file
|
|
pytorch-image-models/timm/loss/asymmetric_loss.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class AsymmetricLossMultiLabel(nn.Module):
|
6 |
+
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False):
|
7 |
+
super(AsymmetricLossMultiLabel, self).__init__()
|
8 |
+
|
9 |
+
self.gamma_neg = gamma_neg
|
10 |
+
self.gamma_pos = gamma_pos
|
11 |
+
self.clip = clip
|
12 |
+
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
13 |
+
self.eps = eps
|
14 |
+
|
15 |
+
def forward(self, x, y):
|
16 |
+
""""
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
x: input logits
|
20 |
+
y: targets (multi-label binarized vector)
|
21 |
+
"""
|
22 |
+
|
23 |
+
# Calculating Probabilities
|
24 |
+
x_sigmoid = torch.sigmoid(x)
|
25 |
+
xs_pos = x_sigmoid
|
26 |
+
xs_neg = 1 - x_sigmoid
|
27 |
+
|
28 |
+
# Asymmetric Clipping
|
29 |
+
if self.clip is not None and self.clip > 0:
|
30 |
+
xs_neg = (xs_neg + self.clip).clamp(max=1)
|
31 |
+
|
32 |
+
# Basic CE calculation
|
33 |
+
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
|
34 |
+
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
|
35 |
+
loss = los_pos + los_neg
|
36 |
+
|
37 |
+
# Asymmetric Focusing
|
38 |
+
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
39 |
+
if self.disable_torch_grad_focal_loss:
|
40 |
+
torch.set_grad_enabled(False)
|
41 |
+
pt0 = xs_pos * y
|
42 |
+
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
|
43 |
+
pt = pt0 + pt1
|
44 |
+
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
|
45 |
+
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
|
46 |
+
if self.disable_torch_grad_focal_loss:
|
47 |
+
torch.set_grad_enabled(True)
|
48 |
+
loss *= one_sided_w
|
49 |
+
|
50 |
+
return -loss.sum()
|
51 |
+
|
52 |
+
|
53 |
+
class AsymmetricLossSingleLabel(nn.Module):
|
54 |
+
def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'):
|
55 |
+
super(AsymmetricLossSingleLabel, self).__init__()
|
56 |
+
|
57 |
+
self.eps = eps
|
58 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
59 |
+
self.targets_classes = [] # prevent gpu repeated memory allocation
|
60 |
+
self.gamma_pos = gamma_pos
|
61 |
+
self.gamma_neg = gamma_neg
|
62 |
+
self.reduction = reduction
|
63 |
+
|
64 |
+
def forward(self, inputs, target, reduction=None):
|
65 |
+
""""
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
x: input logits
|
69 |
+
y: targets (1-hot vector)
|
70 |
+
"""
|
71 |
+
|
72 |
+
num_classes = inputs.size()[-1]
|
73 |
+
log_preds = self.logsoftmax(inputs)
|
74 |
+
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1)
|
75 |
+
|
76 |
+
# ASL weights
|
77 |
+
targets = self.targets_classes
|
78 |
+
anti_targets = 1 - targets
|
79 |
+
xs_pos = torch.exp(log_preds)
|
80 |
+
xs_neg = 1 - xs_pos
|
81 |
+
xs_pos = xs_pos * targets
|
82 |
+
xs_neg = xs_neg * anti_targets
|
83 |
+
asymmetric_w = torch.pow(1 - xs_pos - xs_neg,
|
84 |
+
self.gamma_pos * targets + self.gamma_neg * anti_targets)
|
85 |
+
log_preds = log_preds * asymmetric_w
|
86 |
+
|
87 |
+
if self.eps > 0: # label smoothing
|
88 |
+
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes)
|
89 |
+
|
90 |
+
# loss calculation
|
91 |
+
loss = - self.targets_classes.mul(log_preds)
|
92 |
+
|
93 |
+
loss = loss.sum(dim=-1)
|
94 |
+
if self.reduction == 'mean':
|
95 |
+
loss = loss.mean()
|
96 |
+
|
97 |
+
return loss
|
pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc
ADDED
Binary file (5.81 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc
ADDED
Binary file (11.2 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc
ADDED
Binary file (20.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc
ADDED
Binary file (16.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc
ADDED
Binary file (26.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc
ADDED
Binary file (23.4 kB). View file
|
|
pytorch-image-models/timm/models/_efficientnet_builder.py
ADDED
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" EfficientNet, MobileNetV3, etc Builder
|
2 |
+
|
3 |
+
Assembles EfficieNet and related network feature blocks from string definitions.
|
4 |
+
Handles stride, dilation calculations, and selects feature extraction points.
|
5 |
+
|
6 |
+
Hacked together by / Copyright 2019, Ross Wightman
|
7 |
+
"""
|
8 |
+
from typing import Callable, Optional
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import math
|
12 |
+
import re
|
13 |
+
from copy import deepcopy
|
14 |
+
from functools import partial
|
15 |
+
from typing import Any, Dict, List
|
16 |
+
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from timm.layers import CondConv2d, get_condconv_initializer, get_act_layer, get_attn, make_divisible, LayerType
|
20 |
+
from ._efficientnet_blocks import *
|
21 |
+
from ._manipulate import named_modules
|
22 |
+
|
23 |
+
__all__ = ["EfficientNetBuilder", "BlockArgs", "decode_arch_def", "efficientnet_init_weights",
|
24 |
+
'resolve_bn_args', 'resolve_act_layer', 'round_channels', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT']
|
25 |
+
|
26 |
+
_logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
_DEBUG_BUILDER = False
|
30 |
+
|
31 |
+
# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
|
32 |
+
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
|
33 |
+
# NOTE: momentum varies btw .99 and .9997 depending on source
|
34 |
+
# .99 in official TF TPU impl
|
35 |
+
# .9997 (/w .999 in search space) for paper
|
36 |
+
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
|
37 |
+
BN_EPS_TF_DEFAULT = 1e-3
|
38 |
+
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)
|
39 |
+
|
40 |
+
BlockArgs = List[List[Dict[str, Any]]]
|
41 |
+
|
42 |
+
|
43 |
+
def get_bn_args_tf():
|
44 |
+
return _BN_ARGS_TF.copy()
|
45 |
+
|
46 |
+
|
47 |
+
def resolve_bn_args(kwargs):
|
48 |
+
bn_args = {}
|
49 |
+
bn_momentum = kwargs.pop('bn_momentum', None)
|
50 |
+
if bn_momentum is not None:
|
51 |
+
bn_args['momentum'] = bn_momentum
|
52 |
+
bn_eps = kwargs.pop('bn_eps', None)
|
53 |
+
if bn_eps is not None:
|
54 |
+
bn_args['eps'] = bn_eps
|
55 |
+
return bn_args
|
56 |
+
|
57 |
+
|
58 |
+
def resolve_act_layer(kwargs, default='relu'):
|
59 |
+
return get_act_layer(kwargs.pop('act_layer', default))
|
60 |
+
|
61 |
+
|
62 |
+
def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None, round_limit=0.9):
|
63 |
+
"""Round number of filters based on depth multiplier."""
|
64 |
+
if not multiplier:
|
65 |
+
return channels
|
66 |
+
return make_divisible(channels * multiplier, divisor, channel_min, round_limit=round_limit)
|
67 |
+
|
68 |
+
|
69 |
+
def _log_info_if(msg, condition):
|
70 |
+
if condition:
|
71 |
+
_logger.info(msg)
|
72 |
+
|
73 |
+
|
74 |
+
def _parse_ksize(ss):
|
75 |
+
if ss.isdigit():
|
76 |
+
return int(ss)
|
77 |
+
else:
|
78 |
+
return [int(k) for k in ss.split('.')]
|
79 |
+
|
80 |
+
|
81 |
+
def _decode_block_str(block_str):
|
82 |
+
""" Decode block definition string
|
83 |
+
|
84 |
+
Gets a list of block arg (dicts) through a string notation of arguments.
|
85 |
+
E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip
|
86 |
+
|
87 |
+
All args can exist in any order with the exception of the leading string which
|
88 |
+
is assumed to indicate the block type.
|
89 |
+
|
90 |
+
leading string - block type (
|
91 |
+
ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
|
92 |
+
r - number of repeat blocks,
|
93 |
+
k - kernel size,
|
94 |
+
s - strides (1-9),
|
95 |
+
e - expansion ratio,
|
96 |
+
c - output channels,
|
97 |
+
se - squeeze/excitation ratio
|
98 |
+
n - activation fn ('re', 'r6', 'hs', or 'sw')
|
99 |
+
Args:
|
100 |
+
block_str: a string representation of block arguments.
|
101 |
+
Returns:
|
102 |
+
A list of block args (dicts)
|
103 |
+
Raises:
|
104 |
+
ValueError: if the string def not properly specified (TODO)
|
105 |
+
"""
|
106 |
+
assert isinstance(block_str, str)
|
107 |
+
ops = block_str.split('_')
|
108 |
+
block_type = ops[0] # take the block type off the front
|
109 |
+
ops = ops[1:]
|
110 |
+
options = {}
|
111 |
+
skip = None
|
112 |
+
for op in ops:
|
113 |
+
# string options being checked on individual basis, combine if they grow
|
114 |
+
if op == 'noskip':
|
115 |
+
skip = False # force no skip connection
|
116 |
+
elif op == 'skip':
|
117 |
+
skip = True # force a skip connection
|
118 |
+
elif op.startswith('n'):
|
119 |
+
# activation fn
|
120 |
+
key = op[0]
|
121 |
+
v = op[1:]
|
122 |
+
if v == 're':
|
123 |
+
value = get_act_layer('relu')
|
124 |
+
elif v == 'r6':
|
125 |
+
value = get_act_layer('relu6')
|
126 |
+
elif v == 'hs':
|
127 |
+
value = get_act_layer('hard_swish')
|
128 |
+
elif v == 'sw':
|
129 |
+
value = get_act_layer('swish') # aka SiLU
|
130 |
+
elif v == 'mi':
|
131 |
+
value = get_act_layer('mish')
|
132 |
+
else:
|
133 |
+
continue
|
134 |
+
options[key] = value
|
135 |
+
else:
|
136 |
+
# all numeric options
|
137 |
+
splits = re.split(r'(\d.*)', op)
|
138 |
+
if len(splits) >= 2:
|
139 |
+
key, value = splits[:2]
|
140 |
+
options[key] = value
|
141 |
+
|
142 |
+
# if act_layer is None, the model default (passed to model init) will be used
|
143 |
+
act_layer = options['n'] if 'n' in options else None
|
144 |
+
start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
|
145 |
+
end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
|
146 |
+
force_in_chs = int(options['fc']) if 'fc' in options else 0 # FIXME hack to deal with in_chs issue in TPU def
|
147 |
+
num_repeat = int(options['r'])
|
148 |
+
|
149 |
+
# each type of block has different valid arguments, fill accordingly
|
150 |
+
block_args = dict(
|
151 |
+
block_type=block_type,
|
152 |
+
out_chs=int(options['c']),
|
153 |
+
stride=int(options['s']),
|
154 |
+
act_layer=act_layer,
|
155 |
+
)
|
156 |
+
if block_type == 'ir':
|
157 |
+
block_args.update(dict(
|
158 |
+
dw_kernel_size=_parse_ksize(options['k']),
|
159 |
+
exp_kernel_size=start_kernel_size,
|
160 |
+
pw_kernel_size=end_kernel_size,
|
161 |
+
exp_ratio=float(options['e']),
|
162 |
+
se_ratio=float(options.get('se', 0.)),
|
163 |
+
noskip=skip is False,
|
164 |
+
s2d=int(options.get('d', 0)) > 0,
|
165 |
+
))
|
166 |
+
if 'cc' in options:
|
167 |
+
block_args['num_experts'] = int(options['cc'])
|
168 |
+
elif block_type == 'ds' or block_type == 'dsa':
|
169 |
+
block_args.update(dict(
|
170 |
+
dw_kernel_size=_parse_ksize(options['k']),
|
171 |
+
pw_kernel_size=end_kernel_size,
|
172 |
+
se_ratio=float(options.get('se', 0.)),
|
173 |
+
pw_act=block_type == 'dsa',
|
174 |
+
noskip=block_type == 'dsa' or skip is False,
|
175 |
+
s2d=int(options.get('d', 0)) > 0,
|
176 |
+
))
|
177 |
+
elif block_type == 'er':
|
178 |
+
block_args.update(dict(
|
179 |
+
exp_kernel_size=_parse_ksize(options['k']),
|
180 |
+
pw_kernel_size=end_kernel_size,
|
181 |
+
exp_ratio=float(options['e']),
|
182 |
+
force_in_chs=force_in_chs,
|
183 |
+
se_ratio=float(options.get('se', 0.)),
|
184 |
+
noskip=skip is False,
|
185 |
+
))
|
186 |
+
elif block_type == 'cn':
|
187 |
+
block_args.update(dict(
|
188 |
+
kernel_size=int(options['k']),
|
189 |
+
skip=skip is True,
|
190 |
+
))
|
191 |
+
elif block_type == 'uir':
|
192 |
+
# override exp / proj kernels for start/end in uir block
|
193 |
+
start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 0
|
194 |
+
end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 0
|
195 |
+
block_args.update(dict(
|
196 |
+
dw_kernel_size_start=start_kernel_size, # overload exp ks arg for dw start
|
197 |
+
dw_kernel_size_mid=_parse_ksize(options['k']),
|
198 |
+
dw_kernel_size_end=end_kernel_size, # overload pw ks arg for dw end
|
199 |
+
exp_ratio=float(options['e']),
|
200 |
+
se_ratio=float(options.get('se', 0.)),
|
201 |
+
noskip=skip is False,
|
202 |
+
))
|
203 |
+
elif block_type == 'mha':
|
204 |
+
kv_dim = int(options['d'])
|
205 |
+
block_args.update(dict(
|
206 |
+
dw_kernel_size=_parse_ksize(options['k']),
|
207 |
+
num_heads=int(options['h']),
|
208 |
+
key_dim=kv_dim,
|
209 |
+
value_dim=kv_dim,
|
210 |
+
kv_stride=int(options.get('v', 1)),
|
211 |
+
noskip=skip is False,
|
212 |
+
))
|
213 |
+
elif block_type == 'mqa':
|
214 |
+
kv_dim = int(options['d'])
|
215 |
+
block_args.update(dict(
|
216 |
+
dw_kernel_size=_parse_ksize(options['k']),
|
217 |
+
num_heads=int(options['h']),
|
218 |
+
key_dim=kv_dim,
|
219 |
+
value_dim=kv_dim,
|
220 |
+
kv_stride=int(options.get('v', 1)),
|
221 |
+
noskip=skip is False,
|
222 |
+
))
|
223 |
+
else:
|
224 |
+
assert False, 'Unknown block type (%s)' % block_type
|
225 |
+
|
226 |
+
if 'gs' in options:
|
227 |
+
block_args['group_size'] = int(options['gs'])
|
228 |
+
|
229 |
+
return block_args, num_repeat
|
230 |
+
|
231 |
+
|
232 |
+
def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
|
233 |
+
""" Per-stage depth scaling
|
234 |
+
Scales the block repeats in each stage. This depth scaling impl maintains
|
235 |
+
compatibility with the EfficientNet scaling method, while allowing sensible
|
236 |
+
scaling for other models that may have multiple block arg definitions in each stage.
|
237 |
+
"""
|
238 |
+
|
239 |
+
# We scale the total repeat count for each stage, there may be multiple
|
240 |
+
# block arg defs per stage so we need to sum.
|
241 |
+
num_repeat = sum(repeats)
|
242 |
+
if depth_trunc == 'round':
|
243 |
+
# Truncating to int by rounding allows stages with few repeats to remain
|
244 |
+
# proportionally smaller for longer. This is a good choice when stage definitions
|
245 |
+
# include single repeat stages that we'd prefer to keep that way as long as possible
|
246 |
+
num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
|
247 |
+
else:
|
248 |
+
# The default for EfficientNet truncates repeats to int via 'ceil'.
|
249 |
+
# Any multiplier > 1.0 will result in an increased depth for every stage.
|
250 |
+
num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
|
251 |
+
|
252 |
+
# Proportionally distribute repeat count scaling to each block definition in the stage.
|
253 |
+
# Allocation is done in reverse as it results in the first block being less likely to be scaled.
|
254 |
+
# The first block makes less sense to repeat in most of the arch definitions.
|
255 |
+
repeats_scaled = []
|
256 |
+
for r in repeats[::-1]:
|
257 |
+
rs = max(1, round((r / num_repeat * num_repeat_scaled)))
|
258 |
+
repeats_scaled.append(rs)
|
259 |
+
num_repeat -= r
|
260 |
+
num_repeat_scaled -= rs
|
261 |
+
repeats_scaled = repeats_scaled[::-1]
|
262 |
+
|
263 |
+
# Apply the calculated scaling to each block arg in the stage
|
264 |
+
sa_scaled = []
|
265 |
+
for ba, rep in zip(stack_args, repeats_scaled):
|
266 |
+
sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
|
267 |
+
return sa_scaled
|
268 |
+
|
269 |
+
|
270 |
+
def decode_arch_def(
|
271 |
+
arch_def,
|
272 |
+
depth_multiplier=1.0,
|
273 |
+
depth_trunc='ceil',
|
274 |
+
experts_multiplier=1,
|
275 |
+
fix_first_last=False,
|
276 |
+
group_size=None,
|
277 |
+
):
|
278 |
+
""" Decode block architecture definition strings -> block kwargs
|
279 |
+
|
280 |
+
Args:
|
281 |
+
arch_def: architecture definition strings, list of list of strings
|
282 |
+
depth_multiplier: network depth multiplier
|
283 |
+
depth_trunc: networ depth truncation mode when applying multiplier
|
284 |
+
experts_multiplier: CondConv experts multiplier
|
285 |
+
fix_first_last: fix first and last block depths when multiplier is applied
|
286 |
+
group_size: group size override for all blocks that weren't explicitly set in arch string
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
list of list of block kwargs
|
290 |
+
"""
|
291 |
+
arch_args = []
|
292 |
+
if isinstance(depth_multiplier, tuple):
|
293 |
+
assert len(depth_multiplier) == len(arch_def)
|
294 |
+
else:
|
295 |
+
depth_multiplier = (depth_multiplier,) * len(arch_def)
|
296 |
+
for stack_idx, (block_strings, multiplier) in enumerate(zip(arch_def, depth_multiplier)):
|
297 |
+
assert isinstance(block_strings, list)
|
298 |
+
stack_args = []
|
299 |
+
repeats = []
|
300 |
+
for block_str in block_strings:
|
301 |
+
assert isinstance(block_str, str)
|
302 |
+
ba, rep = _decode_block_str(block_str)
|
303 |
+
if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
|
304 |
+
ba['num_experts'] *= experts_multiplier
|
305 |
+
if group_size is not None:
|
306 |
+
ba.setdefault('group_size', group_size)
|
307 |
+
stack_args.append(ba)
|
308 |
+
repeats.append(rep)
|
309 |
+
if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
|
310 |
+
arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
|
311 |
+
else:
|
312 |
+
arch_args.append(_scale_stage_depth(stack_args, repeats, multiplier, depth_trunc))
|
313 |
+
return arch_args
|
314 |
+
|
315 |
+
|
316 |
+
class EfficientNetBuilder:
|
317 |
+
""" Build Trunk Blocks
|
318 |
+
|
319 |
+
This ended up being somewhat of a cross between
|
320 |
+
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
|
321 |
+
and
|
322 |
+
https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py
|
323 |
+
|
324 |
+
"""
|
325 |
+
def __init__(
|
326 |
+
self,
|
327 |
+
output_stride: int = 32,
|
328 |
+
pad_type: str = '',
|
329 |
+
round_chs_fn: Callable = round_channels,
|
330 |
+
se_from_exp: bool = False,
|
331 |
+
act_layer: Optional[LayerType] = None,
|
332 |
+
norm_layer: Optional[LayerType] = None,
|
333 |
+
aa_layer: Optional[LayerType] = None,
|
334 |
+
se_layer: Optional[LayerType] = None,
|
335 |
+
drop_path_rate: float = 0.,
|
336 |
+
layer_scale_init_value: Optional[float] = None,
|
337 |
+
feature_location: str = '',
|
338 |
+
):
|
339 |
+
self.output_stride = output_stride
|
340 |
+
self.pad_type = pad_type
|
341 |
+
self.round_chs_fn = round_chs_fn
|
342 |
+
self.se_from_exp = se_from_exp # calculate se channel reduction from expanded (mid) chs
|
343 |
+
self.act_layer = act_layer
|
344 |
+
self.norm_layer = norm_layer
|
345 |
+
self.aa_layer = aa_layer
|
346 |
+
self.se_layer = get_attn(se_layer)
|
347 |
+
try:
|
348 |
+
self.se_layer(8, rd_ratio=1.0) # test if attn layer accepts rd_ratio arg
|
349 |
+
self.se_has_ratio = True
|
350 |
+
except TypeError:
|
351 |
+
self.se_has_ratio = False
|
352 |
+
self.drop_path_rate = drop_path_rate
|
353 |
+
self.layer_scale_init_value = layer_scale_init_value
|
354 |
+
if feature_location == 'depthwise':
|
355 |
+
# old 'depthwise' mode renamed 'expansion' to match TF impl, old expansion mode didn't make sense
|
356 |
+
_logger.warning("feature_location=='depthwise' is deprecated, using 'expansion'")
|
357 |
+
feature_location = 'expansion'
|
358 |
+
self.feature_location = feature_location
|
359 |
+
assert feature_location in ('bottleneck', 'expansion', '')
|
360 |
+
self.verbose = _DEBUG_BUILDER
|
361 |
+
|
362 |
+
# state updated during build, consumed by model
|
363 |
+
self.in_chs = None
|
364 |
+
self.features = []
|
365 |
+
|
366 |
+
def _make_block(self, ba, block_idx, block_count):
|
367 |
+
drop_path_rate = self.drop_path_rate * block_idx / block_count
|
368 |
+
bt = ba.pop('block_type')
|
369 |
+
ba['in_chs'] = self.in_chs
|
370 |
+
ba['out_chs'] = self.round_chs_fn(ba['out_chs'])
|
371 |
+
s2d = ba.get('s2d', 0)
|
372 |
+
if s2d > 0:
|
373 |
+
# adjust while space2depth active
|
374 |
+
ba['out_chs'] *= 4
|
375 |
+
if 'force_in_chs' in ba and ba['force_in_chs']:
|
376 |
+
# NOTE this is a hack to work around mismatch in TF EdgeEffNet impl
|
377 |
+
ba['force_in_chs'] = self.round_chs_fn(ba['force_in_chs'])
|
378 |
+
ba['pad_type'] = self.pad_type
|
379 |
+
# block act fn overrides the model default
|
380 |
+
ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
|
381 |
+
assert ba['act_layer'] is not None
|
382 |
+
ba['norm_layer'] = self.norm_layer
|
383 |
+
ba['drop_path_rate'] = drop_path_rate
|
384 |
+
|
385 |
+
if self.aa_layer is not None:
|
386 |
+
ba['aa_layer'] = self.aa_layer
|
387 |
+
|
388 |
+
se_ratio = ba.pop('se_ratio', None)
|
389 |
+
if se_ratio and self.se_layer is not None:
|
390 |
+
if not self.se_from_exp:
|
391 |
+
# adjust se_ratio by expansion ratio if calculating se channels from block input
|
392 |
+
se_ratio /= ba.get('exp_ratio', 1.0)
|
393 |
+
if s2d == 1:
|
394 |
+
# adjust for start of space2depth
|
395 |
+
se_ratio /= 4
|
396 |
+
if self.se_has_ratio:
|
397 |
+
ba['se_layer'] = partial(self.se_layer, rd_ratio=se_ratio)
|
398 |
+
else:
|
399 |
+
ba['se_layer'] = self.se_layer
|
400 |
+
|
401 |
+
if bt == 'ir':
|
402 |
+
_log_info_if(' InvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
403 |
+
block = CondConvResidual(**ba) if ba.get('num_experts', 0) else InvertedResidual(**ba)
|
404 |
+
elif bt == 'ds' or bt == 'dsa':
|
405 |
+
_log_info_if(' DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
406 |
+
block = DepthwiseSeparableConv(**ba)
|
407 |
+
elif bt == 'er':
|
408 |
+
_log_info_if(' EdgeResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
409 |
+
block = EdgeResidual(**ba)
|
410 |
+
elif bt == 'cn':
|
411 |
+
_log_info_if(' ConvBnAct {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
412 |
+
block = ConvBnAct(**ba)
|
413 |
+
elif bt == 'uir':
|
414 |
+
_log_info_if(' UniversalInvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
415 |
+
block = UniversalInvertedResidual(**ba, layer_scale_init_value=self.layer_scale_init_value)
|
416 |
+
elif bt == 'mqa':
|
417 |
+
_log_info_if(' MobileMultiQueryAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
418 |
+
block = MobileAttention(**ba, use_multi_query=True, layer_scale_init_value=self.layer_scale_init_value)
|
419 |
+
elif bt == 'mha':
|
420 |
+
_log_info_if(' MobileMultiHeadAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose)
|
421 |
+
block = MobileAttention(**ba, layer_scale_init_value=self.layer_scale_init_value)
|
422 |
+
else:
|
423 |
+
assert False, 'Unknown block type (%s) while building model.' % bt
|
424 |
+
|
425 |
+
self.in_chs = ba['out_chs'] # update in_chs for arg of next block
|
426 |
+
return block
|
427 |
+
|
428 |
+
def __call__(self, in_chs, model_block_args):
|
429 |
+
""" Build the blocks
|
430 |
+
Args:
|
431 |
+
in_chs: Number of input-channels passed to first block
|
432 |
+
model_block_args: A list of lists, outer list defines stages, inner
|
433 |
+
list contains strings defining block configuration(s)
|
434 |
+
Return:
|
435 |
+
List of block stacks (each stack wrapped in nn.Sequential)
|
436 |
+
"""
|
437 |
+
_log_info_if('Building model trunk with %d stages...' % len(model_block_args), self.verbose)
|
438 |
+
self.in_chs = in_chs
|
439 |
+
total_block_count = sum([len(x) for x in model_block_args])
|
440 |
+
total_block_idx = 0
|
441 |
+
current_stride = 2
|
442 |
+
current_dilation = 1
|
443 |
+
stages = []
|
444 |
+
if model_block_args[0][0]['stride'] > 1:
|
445 |
+
# if the first block starts with a stride, we need to extract first level feat from stem
|
446 |
+
feature_info = dict(module='bn1', num_chs=in_chs, stage=0, reduction=current_stride)
|
447 |
+
self.features.append(feature_info)
|
448 |
+
|
449 |
+
# outer list of block_args defines the stacks
|
450 |
+
space2depth = 0
|
451 |
+
for stack_idx, stack_args in enumerate(model_block_args):
|
452 |
+
last_stack = stack_idx + 1 == len(model_block_args)
|
453 |
+
_log_info_if('Stack: {}'.format(stack_idx), self.verbose)
|
454 |
+
assert isinstance(stack_args, list)
|
455 |
+
|
456 |
+
blocks = []
|
457 |
+
# each stack (stage of blocks) contains a list of block arguments
|
458 |
+
for block_idx, block_args in enumerate(stack_args):
|
459 |
+
last_block = block_idx + 1 == len(stack_args)
|
460 |
+
_log_info_if(' Block: {}'.format(block_idx), self.verbose)
|
461 |
+
|
462 |
+
assert block_args['stride'] in (1, 2)
|
463 |
+
if block_idx >= 1: # only the first block in any stack can have a stride > 1
|
464 |
+
block_args['stride'] = 1
|
465 |
+
|
466 |
+
if not space2depth and block_args.pop('s2d', False):
|
467 |
+
assert block_args['stride'] == 1
|
468 |
+
space2depth = 1
|
469 |
+
|
470 |
+
if space2depth > 0:
|
471 |
+
# FIXME s2d is a WIP
|
472 |
+
if space2depth == 2 and block_args['stride'] == 2:
|
473 |
+
block_args['stride'] = 1
|
474 |
+
# to end s2d region, need to correct expansion and se ratio relative to input
|
475 |
+
block_args['exp_ratio'] /= 4
|
476 |
+
space2depth = 0
|
477 |
+
else:
|
478 |
+
block_args['s2d'] = space2depth
|
479 |
+
|
480 |
+
extract_features = False
|
481 |
+
if last_block:
|
482 |
+
next_stack_idx = stack_idx + 1
|
483 |
+
extract_features = next_stack_idx >= len(model_block_args) or \
|
484 |
+
model_block_args[next_stack_idx][0]['stride'] > 1
|
485 |
+
|
486 |
+
next_dilation = current_dilation
|
487 |
+
if block_args['stride'] > 1:
|
488 |
+
next_output_stride = current_stride * block_args['stride']
|
489 |
+
if next_output_stride > self.output_stride:
|
490 |
+
next_dilation = current_dilation * block_args['stride']
|
491 |
+
block_args['stride'] = 1
|
492 |
+
_log_info_if(' Converting stride to dilation to maintain output_stride=={}'.format(
|
493 |
+
self.output_stride), self.verbose)
|
494 |
+
else:
|
495 |
+
current_stride = next_output_stride
|
496 |
+
block_args['dilation'] = current_dilation
|
497 |
+
if next_dilation != current_dilation:
|
498 |
+
current_dilation = next_dilation
|
499 |
+
|
500 |
+
# create the block
|
501 |
+
block = self._make_block(block_args, total_block_idx, total_block_count)
|
502 |
+
blocks.append(block)
|
503 |
+
|
504 |
+
if space2depth == 1:
|
505 |
+
space2depth = 2
|
506 |
+
|
507 |
+
# stash feature module name and channel info for model feature extraction
|
508 |
+
if extract_features:
|
509 |
+
feature_info = dict(
|
510 |
+
stage=stack_idx + 1,
|
511 |
+
reduction=current_stride,
|
512 |
+
**block.feature_info(self.feature_location),
|
513 |
+
)
|
514 |
+
leaf_name = feature_info.get('module', '')
|
515 |
+
if leaf_name:
|
516 |
+
feature_info['module'] = '.'.join([f'blocks.{stack_idx}.{block_idx}', leaf_name])
|
517 |
+
else:
|
518 |
+
assert last_block
|
519 |
+
feature_info['module'] = f'blocks.{stack_idx}'
|
520 |
+
self.features.append(feature_info)
|
521 |
+
|
522 |
+
total_block_idx += 1 # incr global block idx (across all stacks)
|
523 |
+
stages.append(nn.Sequential(*blocks))
|
524 |
+
return stages
|
525 |
+
|
526 |
+
|
527 |
+
def _init_weight_goog(m, n='', fix_group_fanout=True):
|
528 |
+
""" Weight initialization as per Tensorflow official implementations.
|
529 |
+
|
530 |
+
Args:
|
531 |
+
m (nn.Module): module to init
|
532 |
+
n (str): module name
|
533 |
+
fix_group_fanout (bool): enable correct (matching Tensorflow TPU impl) fanout calculation w/ group convs
|
534 |
+
|
535 |
+
Handles layers in EfficientNet, EfficientNet-CondConv, MixNet, MnasNet, MobileNetV3, etc:
|
536 |
+
* https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
|
537 |
+
* https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
|
538 |
+
"""
|
539 |
+
if isinstance(m, CondConv2d):
|
540 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
541 |
+
if fix_group_fanout:
|
542 |
+
fan_out //= m.groups
|
543 |
+
init_weight_fn = get_condconv_initializer(
|
544 |
+
lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
|
545 |
+
init_weight_fn(m.weight)
|
546 |
+
if m.bias is not None:
|
547 |
+
nn.init.zeros_(m.bias)
|
548 |
+
elif isinstance(m, nn.Conv2d):
|
549 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
550 |
+
if fix_group_fanout:
|
551 |
+
fan_out //= m.groups
|
552 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
|
553 |
+
if m.bias is not None:
|
554 |
+
nn.init.zeros_(m.bias)
|
555 |
+
elif isinstance(m, nn.BatchNorm2d):
|
556 |
+
nn.init.ones_(m.weight)
|
557 |
+
nn.init.zeros_(m.bias)
|
558 |
+
elif isinstance(m, nn.Linear):
|
559 |
+
fan_out = m.weight.size(0) # fan-out
|
560 |
+
fan_in = 0
|
561 |
+
if 'routing_fn' in n:
|
562 |
+
fan_in = m.weight.size(1)
|
563 |
+
init_range = 1.0 / math.sqrt(fan_in + fan_out)
|
564 |
+
nn.init.uniform_(m.weight, -init_range, init_range)
|
565 |
+
nn.init.zeros_(m.bias)
|
566 |
+
|
567 |
+
|
568 |
+
def efficientnet_init_weights(model: nn.Module, init_fn=None):
|
569 |
+
init_fn = init_fn or _init_weight_goog
|
570 |
+
for n, m in model.named_modules():
|
571 |
+
init_fn(m, n)
|
572 |
+
|
573 |
+
# iterate and call any module.init_weights() fn, children first
|
574 |
+
for n, m in named_modules(model):
|
575 |
+
if hasattr(m, 'init_weights'):
|
576 |
+
m.init_weights()
|
pytorch-image-models/timm/models/_helpers.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Model creation / weight loading / state_dict helpers
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
from typing import Any, Callable, Dict, Optional, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
try:
|
11 |
+
import safetensors.torch
|
12 |
+
_has_safetensors = True
|
13 |
+
except ImportError:
|
14 |
+
_has_safetensors = False
|
15 |
+
|
16 |
+
_logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
__all__ = ['clean_state_dict', 'load_state_dict', 'load_checkpoint', 'remap_state_dict', 'resume_checkpoint']
|
19 |
+
|
20 |
+
|
21 |
+
def _remove_prefix(text, prefix):
|
22 |
+
# FIXME replace with 3.9 stdlib fn when min at 3.9
|
23 |
+
if text.startswith(prefix):
|
24 |
+
return text[len(prefix):]
|
25 |
+
return text
|
26 |
+
|
27 |
+
|
28 |
+
def clean_state_dict(state_dict: Dict[str, Any]) -> Dict[str, Any]:
|
29 |
+
# 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training
|
30 |
+
cleaned_state_dict = {}
|
31 |
+
to_remove = (
|
32 |
+
'module.', # DDP wrapper
|
33 |
+
'_orig_mod.', # torchcompile dynamo wrapper
|
34 |
+
)
|
35 |
+
for k, v in state_dict.items():
|
36 |
+
for r in to_remove:
|
37 |
+
k = _remove_prefix(k, r)
|
38 |
+
cleaned_state_dict[k] = v
|
39 |
+
return cleaned_state_dict
|
40 |
+
|
41 |
+
|
42 |
+
def load_state_dict(
|
43 |
+
checkpoint_path: str,
|
44 |
+
use_ema: bool = True,
|
45 |
+
device: Union[str, torch.device] = 'cpu',
|
46 |
+
weights_only: bool = False,
|
47 |
+
) -> Dict[str, Any]:
|
48 |
+
if checkpoint_path and os.path.isfile(checkpoint_path):
|
49 |
+
# Check if safetensors or not and load weights accordingly
|
50 |
+
if str(checkpoint_path).endswith(".safetensors"):
|
51 |
+
assert _has_safetensors, "`pip install safetensors` to use .safetensors"
|
52 |
+
checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
|
53 |
+
else:
|
54 |
+
try:
|
55 |
+
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only)
|
56 |
+
except TypeError:
|
57 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
58 |
+
|
59 |
+
state_dict_key = ''
|
60 |
+
if isinstance(checkpoint, dict):
|
61 |
+
if use_ema and checkpoint.get('state_dict_ema', None) is not None:
|
62 |
+
state_dict_key = 'state_dict_ema'
|
63 |
+
elif use_ema and checkpoint.get('model_ema', None) is not None:
|
64 |
+
state_dict_key = 'model_ema'
|
65 |
+
elif 'state_dict' in checkpoint:
|
66 |
+
state_dict_key = 'state_dict'
|
67 |
+
elif 'model' in checkpoint:
|
68 |
+
state_dict_key = 'model'
|
69 |
+
state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint)
|
70 |
+
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
|
71 |
+
return state_dict
|
72 |
+
else:
|
73 |
+
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
|
74 |
+
raise FileNotFoundError()
|
75 |
+
|
76 |
+
|
77 |
+
def load_checkpoint(
|
78 |
+
model: torch.nn.Module,
|
79 |
+
checkpoint_path: str,
|
80 |
+
use_ema: bool = True,
|
81 |
+
device: Union[str, torch.device] = 'cpu',
|
82 |
+
strict: bool = True,
|
83 |
+
remap: bool = False,
|
84 |
+
filter_fn: Optional[Callable] = None,
|
85 |
+
weights_only: bool = False,
|
86 |
+
):
|
87 |
+
if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'):
|
88 |
+
# numpy checkpoint, try to load via model specific load_pretrained fn
|
89 |
+
if hasattr(model, 'load_pretrained'):
|
90 |
+
model.load_pretrained(checkpoint_path)
|
91 |
+
else:
|
92 |
+
raise NotImplementedError('Model cannot load numpy checkpoint')
|
93 |
+
return
|
94 |
+
|
95 |
+
state_dict = load_state_dict(checkpoint_path, use_ema, device=device, weights_only=weights_only)
|
96 |
+
if remap:
|
97 |
+
state_dict = remap_state_dict(state_dict, model)
|
98 |
+
elif filter_fn:
|
99 |
+
state_dict = filter_fn(state_dict, model)
|
100 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
101 |
+
return incompatible_keys
|
102 |
+
|
103 |
+
|
104 |
+
def remap_state_dict(
|
105 |
+
state_dict: Dict[str, Any],
|
106 |
+
model: torch.nn.Module,
|
107 |
+
allow_reshape: bool = True
|
108 |
+
):
|
109 |
+
""" remap checkpoint by iterating over state dicts in order (ignoring original keys).
|
110 |
+
This assumes models (and originating state dict) were created with params registered in same order.
|
111 |
+
"""
|
112 |
+
out_dict = {}
|
113 |
+
for (ka, va), (kb, vb) in zip(model.state_dict().items(), state_dict.items()):
|
114 |
+
assert va.numel() == vb.numel(), f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
|
115 |
+
if va.shape != vb.shape:
|
116 |
+
if allow_reshape:
|
117 |
+
vb = vb.reshape(va.shape)
|
118 |
+
else:
|
119 |
+
assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
|
120 |
+
out_dict[ka] = vb
|
121 |
+
return out_dict
|
122 |
+
|
123 |
+
|
124 |
+
def resume_checkpoint(
|
125 |
+
model: torch.nn.Module,
|
126 |
+
checkpoint_path: str,
|
127 |
+
optimizer: torch.optim.Optimizer = None,
|
128 |
+
loss_scaler: Any = None,
|
129 |
+
log_info: bool = True,
|
130 |
+
):
|
131 |
+
resume_epoch = None
|
132 |
+
if os.path.isfile(checkpoint_path):
|
133 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False)
|
134 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
135 |
+
if log_info:
|
136 |
+
_logger.info('Restoring model state from checkpoint...')
|
137 |
+
state_dict = clean_state_dict(checkpoint['state_dict'])
|
138 |
+
model.load_state_dict(state_dict)
|
139 |
+
|
140 |
+
if optimizer is not None and 'optimizer' in checkpoint:
|
141 |
+
if log_info:
|
142 |
+
_logger.info('Restoring optimizer state from checkpoint...')
|
143 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
144 |
+
|
145 |
+
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
|
146 |
+
if log_info:
|
147 |
+
_logger.info('Restoring AMP loss scaler state from checkpoint...')
|
148 |
+
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
|
149 |
+
|
150 |
+
if 'epoch' in checkpoint:
|
151 |
+
resume_epoch = checkpoint['epoch']
|
152 |
+
if 'version' in checkpoint and checkpoint['version'] > 1:
|
153 |
+
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
|
154 |
+
|
155 |
+
if log_info:
|
156 |
+
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
|
157 |
+
else:
|
158 |
+
model.load_state_dict(checkpoint)
|
159 |
+
if log_info:
|
160 |
+
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
|
161 |
+
return resume_epoch
|
162 |
+
else:
|
163 |
+
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
|
164 |
+
raise FileNotFoundError()
|
165 |
+
|
166 |
+
|
pytorch-image-models/timm/models/_manipulate.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import math
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from itertools import chain
|
6 |
+
from typing import Any, Callable, Dict, Iterator, Tuple, Type, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn as nn
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
+
|
12 |
+
__all__ = ['model_parameters', 'named_apply', 'named_modules', 'named_modules_with_params', 'adapt_input_conv',
|
13 |
+
'group_with_matcher', 'group_modules', 'group_parameters', 'flatten_modules', 'checkpoint_seq']
|
14 |
+
|
15 |
+
|
16 |
+
def model_parameters(model: nn.Module, exclude_head: bool = False):
|
17 |
+
if exclude_head:
|
18 |
+
# FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering
|
19 |
+
return [p for p in model.parameters()][:-2]
|
20 |
+
else:
|
21 |
+
return model.parameters()
|
22 |
+
|
23 |
+
|
24 |
+
def named_apply(
|
25 |
+
fn: Callable,
|
26 |
+
module: nn.Module, name='',
|
27 |
+
depth_first: bool = True,
|
28 |
+
include_root: bool = False,
|
29 |
+
) -> nn.Module:
|
30 |
+
if not depth_first and include_root:
|
31 |
+
fn(module=module, name=name)
|
32 |
+
for child_name, child_module in module.named_children():
|
33 |
+
child_name = '.'.join((name, child_name)) if name else child_name
|
34 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
35 |
+
if depth_first and include_root:
|
36 |
+
fn(module=module, name=name)
|
37 |
+
return module
|
38 |
+
|
39 |
+
|
40 |
+
def named_modules(
|
41 |
+
module: nn.Module,
|
42 |
+
name: str = '',
|
43 |
+
depth_first: bool = True,
|
44 |
+
include_root: bool = False,
|
45 |
+
):
|
46 |
+
if not depth_first and include_root:
|
47 |
+
yield name, module
|
48 |
+
for child_name, child_module in module.named_children():
|
49 |
+
child_name = '.'.join((name, child_name)) if name else child_name
|
50 |
+
yield from named_modules(
|
51 |
+
module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
52 |
+
if depth_first and include_root:
|
53 |
+
yield name, module
|
54 |
+
|
55 |
+
|
56 |
+
def named_modules_with_params(
|
57 |
+
module: nn.Module,
|
58 |
+
name: str = '',
|
59 |
+
depth_first: bool = True,
|
60 |
+
include_root: bool = False,
|
61 |
+
):
|
62 |
+
if module._parameters and not depth_first and include_root:
|
63 |
+
yield name, module
|
64 |
+
for child_name, child_module in module.named_children():
|
65 |
+
child_name = '.'.join((name, child_name)) if name else child_name
|
66 |
+
yield from named_modules_with_params(
|
67 |
+
module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
68 |
+
if module._parameters and depth_first and include_root:
|
69 |
+
yield name, module
|
70 |
+
|
71 |
+
|
72 |
+
MATCH_PREV_GROUP = (99999,)
|
73 |
+
|
74 |
+
|
75 |
+
def group_with_matcher(
|
76 |
+
named_objects: Iterator[Tuple[str, Any]],
|
77 |
+
group_matcher: Union[Dict, Callable],
|
78 |
+
return_values: bool = False,
|
79 |
+
reverse: bool = False
|
80 |
+
):
|
81 |
+
if isinstance(group_matcher, dict):
|
82 |
+
# dictionary matcher contains a dict of raw-string regex expr that must be compiled
|
83 |
+
compiled = []
|
84 |
+
for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()):
|
85 |
+
if mspec is None:
|
86 |
+
continue
|
87 |
+
# map all matching specifications into 3-tuple (compiled re, prefix, suffix)
|
88 |
+
if isinstance(mspec, (tuple, list)):
|
89 |
+
# multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix)
|
90 |
+
for sspec in mspec:
|
91 |
+
compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])]
|
92 |
+
else:
|
93 |
+
compiled += [(re.compile(mspec), (group_ordinal,), None)]
|
94 |
+
group_matcher = compiled
|
95 |
+
|
96 |
+
def _get_grouping(name):
|
97 |
+
if isinstance(group_matcher, (list, tuple)):
|
98 |
+
for match_fn, prefix, suffix in group_matcher:
|
99 |
+
r = match_fn.match(name)
|
100 |
+
if r:
|
101 |
+
parts = (prefix, r.groups(), suffix)
|
102 |
+
# map all tuple elem to int for numeric sort, filter out None entries
|
103 |
+
return tuple(map(float, chain.from_iterable(filter(None, parts))))
|
104 |
+
return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal
|
105 |
+
else:
|
106 |
+
ord = group_matcher(name)
|
107 |
+
if not isinstance(ord, collections.abc.Iterable):
|
108 |
+
return ord,
|
109 |
+
return tuple(ord)
|
110 |
+
|
111 |
+
# map layers into groups via ordinals (ints or tuples of ints) from matcher
|
112 |
+
grouping = defaultdict(list)
|
113 |
+
for k, v in named_objects:
|
114 |
+
grouping[_get_grouping(k)].append(v if return_values else k)
|
115 |
+
|
116 |
+
# remap to integers
|
117 |
+
layer_id_to_param = defaultdict(list)
|
118 |
+
lid = -1
|
119 |
+
for k in sorted(filter(lambda x: x is not None, grouping.keys())):
|
120 |
+
if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]:
|
121 |
+
lid += 1
|
122 |
+
layer_id_to_param[lid].extend(grouping[k])
|
123 |
+
|
124 |
+
if reverse:
|
125 |
+
assert not return_values, "reverse mapping only sensible for name output"
|
126 |
+
# output reverse mapping
|
127 |
+
param_to_layer_id = {}
|
128 |
+
for lid, lm in layer_id_to_param.items():
|
129 |
+
for n in lm:
|
130 |
+
param_to_layer_id[n] = lid
|
131 |
+
return param_to_layer_id
|
132 |
+
|
133 |
+
return layer_id_to_param
|
134 |
+
|
135 |
+
|
136 |
+
def group_parameters(
|
137 |
+
module: nn.Module,
|
138 |
+
group_matcher,
|
139 |
+
return_values: bool = False,
|
140 |
+
reverse: bool = False,
|
141 |
+
):
|
142 |
+
return group_with_matcher(
|
143 |
+
module.named_parameters(), group_matcher, return_values=return_values, reverse=reverse)
|
144 |
+
|
145 |
+
|
146 |
+
def group_modules(
|
147 |
+
module: nn.Module,
|
148 |
+
group_matcher,
|
149 |
+
return_values: bool = False,
|
150 |
+
reverse: bool = False,
|
151 |
+
):
|
152 |
+
return group_with_matcher(
|
153 |
+
named_modules_with_params(module), group_matcher, return_values=return_values, reverse=reverse)
|
154 |
+
|
155 |
+
|
156 |
+
def flatten_modules(
|
157 |
+
named_modules: Iterator[Tuple[str, nn.Module]],
|
158 |
+
depth: int = 1,
|
159 |
+
prefix: Union[str, Tuple[str, ...]] = '',
|
160 |
+
module_types: Union[str, Tuple[Type[nn.Module]]] = 'sequential',
|
161 |
+
):
|
162 |
+
prefix_is_tuple = isinstance(prefix, tuple)
|
163 |
+
if isinstance(module_types, str):
|
164 |
+
if module_types == 'container':
|
165 |
+
module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict)
|
166 |
+
else:
|
167 |
+
module_types = (nn.Sequential,)
|
168 |
+
for name, module in named_modules:
|
169 |
+
if depth and isinstance(module, module_types):
|
170 |
+
yield from flatten_modules(
|
171 |
+
module.named_children(),
|
172 |
+
depth - 1,
|
173 |
+
prefix=(name,) if prefix_is_tuple else name,
|
174 |
+
module_types=module_types,
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
if prefix_is_tuple:
|
178 |
+
name = prefix + (name,)
|
179 |
+
yield name, module
|
180 |
+
else:
|
181 |
+
if prefix:
|
182 |
+
name = '.'.join([prefix, name])
|
183 |
+
yield name, module
|
184 |
+
|
185 |
+
|
186 |
+
def checkpoint_seq(
|
187 |
+
functions,
|
188 |
+
x,
|
189 |
+
every=1,
|
190 |
+
flatten=False,
|
191 |
+
skip_last=False,
|
192 |
+
preserve_rng_state=True
|
193 |
+
):
|
194 |
+
r"""A helper function for checkpointing sequential models.
|
195 |
+
|
196 |
+
Sequential models execute a list of modules/functions in order
|
197 |
+
(sequentially). Therefore, we can divide such a sequence into segments
|
198 |
+
and checkpoint each segment. All segments except run in :func:`torch.no_grad`
|
199 |
+
manner, i.e., not storing the intermediate activations. The inputs of each
|
200 |
+
checkpointed segment will be saved for re-running the segment in the backward pass.
|
201 |
+
|
202 |
+
See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works.
|
203 |
+
|
204 |
+
.. warning::
|
205 |
+
Checkpointing currently only supports :func:`torch.autograd.backward`
|
206 |
+
and only if its `inputs` argument is not passed. :func:`torch.autograd.grad`
|
207 |
+
is not supported.
|
208 |
+
|
209 |
+
.. warning:
|
210 |
+
At least one of the inputs needs to have :code:`requires_grad=True` if
|
211 |
+
grads are needed for model inputs, otherwise the checkpointed part of the
|
212 |
+
model won't have gradients.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially.
|
216 |
+
x: A Tensor that is input to :attr:`functions`
|
217 |
+
every: checkpoint every-n functions (default: 1)
|
218 |
+
flatten (bool): flatten nn.Sequential of nn.Sequentials
|
219 |
+
skip_last (bool): skip checkpointing the last function in the sequence if True
|
220 |
+
preserve_rng_state (bool, optional, default=True): Omit stashing and restoring
|
221 |
+
the RNG state during each checkpoint.
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
Output of running :attr:`functions` sequentially on :attr:`*inputs`
|
225 |
+
|
226 |
+
Example:
|
227 |
+
>>> model = nn.Sequential(...)
|
228 |
+
>>> input_var = checkpoint_seq(model, input_var, every=2)
|
229 |
+
"""
|
230 |
+
def run_function(start, end, functions):
|
231 |
+
def forward(_x):
|
232 |
+
for j in range(start, end + 1):
|
233 |
+
_x = functions[j](_x)
|
234 |
+
return _x
|
235 |
+
return forward
|
236 |
+
|
237 |
+
if isinstance(functions, torch.nn.Sequential):
|
238 |
+
functions = functions.children()
|
239 |
+
if flatten:
|
240 |
+
functions = chain.from_iterable(functions)
|
241 |
+
if not isinstance(functions, (tuple, list)):
|
242 |
+
functions = tuple(functions)
|
243 |
+
|
244 |
+
num_checkpointed = len(functions)
|
245 |
+
if skip_last:
|
246 |
+
num_checkpointed -= 1
|
247 |
+
end = -1
|
248 |
+
for start in range(0, num_checkpointed, every):
|
249 |
+
end = min(start + every - 1, num_checkpointed - 1)
|
250 |
+
x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state)
|
251 |
+
if skip_last:
|
252 |
+
return run_function(end + 1, len(functions) - 1, functions)(x)
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
def adapt_input_conv(in_chans, conv_weight):
|
257 |
+
conv_type = conv_weight.dtype
|
258 |
+
conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU
|
259 |
+
O, I, J, K = conv_weight.shape
|
260 |
+
if in_chans == 1:
|
261 |
+
if I > 3:
|
262 |
+
assert conv_weight.shape[1] % 3 == 0
|
263 |
+
# For models with space2depth stems
|
264 |
+
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
|
265 |
+
conv_weight = conv_weight.sum(dim=2, keepdim=False)
|
266 |
+
else:
|
267 |
+
conv_weight = conv_weight.sum(dim=1, keepdim=True)
|
268 |
+
elif in_chans != 3:
|
269 |
+
if I != 3:
|
270 |
+
raise NotImplementedError('Weight format not supported by conversion.')
|
271 |
+
else:
|
272 |
+
# NOTE this strategy should be better than random init, but there could be other combinations of
|
273 |
+
# the original RGB input layer weights that'd work better for specific cases.
|
274 |
+
repeat = int(math.ceil(in_chans / 3))
|
275 |
+
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
|
276 |
+
conv_weight *= (3 / float(in_chans))
|
277 |
+
conv_weight = conv_weight.to(conv_type)
|
278 |
+
return conv_weight
|
pytorch-image-models/timm/models/_pretrained.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from collections import deque, defaultdict
|
3 |
+
from dataclasses import dataclass, field, replace, asdict
|
4 |
+
from typing import Any, Deque, Dict, Tuple, Optional, Union
|
5 |
+
|
6 |
+
|
7 |
+
__all__ = ['PretrainedCfg', 'filter_pretrained_cfg', 'DefaultCfg']
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class PretrainedCfg:
|
12 |
+
"""
|
13 |
+
"""
|
14 |
+
# weight source locations
|
15 |
+
url: Optional[Union[str, Tuple[str, str]]] = None # remote URL
|
16 |
+
file: Optional[str] = None # local / shared filesystem path
|
17 |
+
state_dict: Optional[Dict[str, Any]] = None # in-memory state dict
|
18 |
+
hf_hub_id: Optional[str] = None # Hugging Face Hub model id ('organization/model')
|
19 |
+
hf_hub_filename: Optional[str] = None # Hugging Face Hub filename (overrides default)
|
20 |
+
|
21 |
+
source: Optional[str] = None # source of cfg / weight location used (url, file, hf-hub)
|
22 |
+
architecture: Optional[str] = None # architecture variant can be set when not implicit
|
23 |
+
tag: Optional[str] = None # pretrained tag of source
|
24 |
+
custom_load: bool = False # use custom model specific model.load_pretrained() (ie for npz files)
|
25 |
+
|
26 |
+
# input / data config
|
27 |
+
input_size: Tuple[int, int, int] = (3, 224, 224)
|
28 |
+
test_input_size: Optional[Tuple[int, int, int]] = None
|
29 |
+
min_input_size: Optional[Tuple[int, int, int]] = None
|
30 |
+
fixed_input_size: bool = False
|
31 |
+
interpolation: str = 'bicubic'
|
32 |
+
crop_pct: float = 0.875
|
33 |
+
test_crop_pct: Optional[float] = None
|
34 |
+
crop_mode: str = 'center'
|
35 |
+
mean: Tuple[float, ...] = (0.485, 0.456, 0.406)
|
36 |
+
std: Tuple[float, ...] = (0.229, 0.224, 0.225)
|
37 |
+
|
38 |
+
# head / classifier config and meta-data
|
39 |
+
num_classes: int = 1000
|
40 |
+
label_offset: Optional[int] = None
|
41 |
+
label_names: Optional[Tuple[str]] = None
|
42 |
+
label_descriptions: Optional[Dict[str, str]] = None
|
43 |
+
|
44 |
+
# model attributes that vary with above or required for pretrained adaptation
|
45 |
+
pool_size: Optional[Tuple[int, ...]] = None
|
46 |
+
test_pool_size: Optional[Tuple[int, ...]] = None
|
47 |
+
first_conv: Optional[str] = None
|
48 |
+
classifier: Optional[str] = None
|
49 |
+
|
50 |
+
license: Optional[str] = None
|
51 |
+
description: Optional[str] = None
|
52 |
+
origin_url: Optional[str] = None
|
53 |
+
paper_name: Optional[str] = None
|
54 |
+
paper_ids: Optional[Union[str, Tuple[str]]] = None
|
55 |
+
notes: Optional[Tuple[str]] = None
|
56 |
+
|
57 |
+
@property
|
58 |
+
def has_weights(self):
|
59 |
+
return self.url or self.file or self.hf_hub_id
|
60 |
+
|
61 |
+
def to_dict(self, remove_source=False, remove_null=True):
|
62 |
+
return filter_pretrained_cfg(
|
63 |
+
asdict(self),
|
64 |
+
remove_source=remove_source,
|
65 |
+
remove_null=remove_null
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True):
|
70 |
+
filtered_cfg = {}
|
71 |
+
keep_null = {'pool_size', 'first_conv', 'classifier'} # always keep these keys, even if none
|
72 |
+
for k, v in cfg.items():
|
73 |
+
if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}:
|
74 |
+
continue
|
75 |
+
if remove_null and v is None and k not in keep_null:
|
76 |
+
continue
|
77 |
+
filtered_cfg[k] = v
|
78 |
+
return filtered_cfg
|
79 |
+
|
80 |
+
|
81 |
+
@dataclass
|
82 |
+
class DefaultCfg:
|
83 |
+
tags: Deque[str] = field(default_factory=deque) # priority queue of tags (first is default)
|
84 |
+
cfgs: Dict[str, PretrainedCfg] = field(default_factory=dict) # pretrained cfgs by tag
|
85 |
+
is_pretrained: bool = False # at least one of the configs has a pretrained source set
|
86 |
+
|
87 |
+
@property
|
88 |
+
def default(self):
|
89 |
+
return self.cfgs[self.tags[0]]
|
90 |
+
|
91 |
+
@property
|
92 |
+
def default_with_tag(self):
|
93 |
+
tag = self.tags[0]
|
94 |
+
return tag, self.cfgs[tag]
|
pytorch-image-models/timm/models/_prune.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pkgutil
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
from torch import nn as nn
|
6 |
+
|
7 |
+
from timm.layers import Conv2dSame, BatchNormAct2d, Linear
|
8 |
+
|
9 |
+
__all__ = ['extract_layer', 'set_layer', 'adapt_model_from_string', 'adapt_model_from_file']
|
10 |
+
|
11 |
+
|
12 |
+
def extract_layer(model, layer):
|
13 |
+
layer = layer.split('.')
|
14 |
+
module = model
|
15 |
+
if hasattr(model, 'module') and layer[0] != 'module':
|
16 |
+
module = model.module
|
17 |
+
if not hasattr(model, 'module') and layer[0] == 'module':
|
18 |
+
layer = layer[1:]
|
19 |
+
for l in layer:
|
20 |
+
if hasattr(module, l):
|
21 |
+
if not l.isdigit():
|
22 |
+
module = getattr(module, l)
|
23 |
+
else:
|
24 |
+
module = module[int(l)]
|
25 |
+
else:
|
26 |
+
return module
|
27 |
+
return module
|
28 |
+
|
29 |
+
|
30 |
+
def set_layer(model, layer, val):
|
31 |
+
layer = layer.split('.')
|
32 |
+
module = model
|
33 |
+
if hasattr(model, 'module') and layer[0] != 'module':
|
34 |
+
module = model.module
|
35 |
+
lst_index = 0
|
36 |
+
module2 = module
|
37 |
+
for l in layer:
|
38 |
+
if hasattr(module2, l):
|
39 |
+
if not l.isdigit():
|
40 |
+
module2 = getattr(module2, l)
|
41 |
+
else:
|
42 |
+
module2 = module2[int(l)]
|
43 |
+
lst_index += 1
|
44 |
+
lst_index -= 1
|
45 |
+
for l in layer[:lst_index]:
|
46 |
+
if not l.isdigit():
|
47 |
+
module = getattr(module, l)
|
48 |
+
else:
|
49 |
+
module = module[int(l)]
|
50 |
+
l = layer[lst_index]
|
51 |
+
setattr(module, l, val)
|
52 |
+
|
53 |
+
|
54 |
+
def adapt_model_from_string(parent_module, model_string):
|
55 |
+
separator = '***'
|
56 |
+
state_dict = {}
|
57 |
+
lst_shape = model_string.split(separator)
|
58 |
+
for k in lst_shape:
|
59 |
+
k = k.split(':')
|
60 |
+
key = k[0]
|
61 |
+
shape = k[1][1:-1].split(',')
|
62 |
+
if shape[0] != '':
|
63 |
+
state_dict[key] = [int(i) for i in shape]
|
64 |
+
|
65 |
+
new_module = deepcopy(parent_module)
|
66 |
+
for n, m in parent_module.named_modules():
|
67 |
+
old_module = extract_layer(parent_module, n)
|
68 |
+
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
|
69 |
+
if isinstance(old_module, Conv2dSame):
|
70 |
+
conv = Conv2dSame
|
71 |
+
else:
|
72 |
+
conv = nn.Conv2d
|
73 |
+
s = state_dict[n + '.weight']
|
74 |
+
in_channels = s[1]
|
75 |
+
out_channels = s[0]
|
76 |
+
g = 1
|
77 |
+
if old_module.groups > 1:
|
78 |
+
in_channels = out_channels
|
79 |
+
g = in_channels
|
80 |
+
new_conv = conv(
|
81 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
|
82 |
+
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
|
83 |
+
groups=g, stride=old_module.stride)
|
84 |
+
set_layer(new_module, n, new_conv)
|
85 |
+
elif isinstance(old_module, BatchNormAct2d):
|
86 |
+
new_bn = BatchNormAct2d(
|
87 |
+
state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
|
88 |
+
affine=old_module.affine, track_running_stats=True)
|
89 |
+
new_bn.drop = old_module.drop
|
90 |
+
new_bn.act = old_module.act
|
91 |
+
set_layer(new_module, n, new_bn)
|
92 |
+
elif isinstance(old_module, nn.BatchNorm2d):
|
93 |
+
new_bn = nn.BatchNorm2d(
|
94 |
+
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
|
95 |
+
affine=old_module.affine, track_running_stats=True)
|
96 |
+
set_layer(new_module, n, new_bn)
|
97 |
+
elif isinstance(old_module, nn.Linear):
|
98 |
+
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer?
|
99 |
+
num_features = state_dict[n + '.weight'][1]
|
100 |
+
new_fc = Linear(
|
101 |
+
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None)
|
102 |
+
set_layer(new_module, n, new_fc)
|
103 |
+
if hasattr(new_module, 'num_features'):
|
104 |
+
if getattr(new_module, 'head_hidden_size', 0) == new_module.num_features:
|
105 |
+
new_module.head_hidden_size = num_features
|
106 |
+
new_module.num_features = num_features
|
107 |
+
|
108 |
+
new_module.eval()
|
109 |
+
parent_module.eval()
|
110 |
+
|
111 |
+
return new_module
|
112 |
+
|
113 |
+
|
114 |
+
def adapt_model_from_file(parent_module, model_variant):
|
115 |
+
adapt_data = pkgutil.get_data(__name__, os.path.join('_pruned', model_variant + '.txt'))
|
116 |
+
return adapt_model_from_string(parent_module, adapt_data.decode('utf-8').strip())
|
pytorch-image-models/timm/models/_pruned/efficientnet_b1_pruned.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conv_stem.weight:[32, 3, 3, 3]***bn1.weight:[32]***bn1.bias:[32]***bn1.running_mean:[32]***bn1.running_var:[32]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[32, 1, 3, 3]***blocks.0.0.bn1.weight:[32]***blocks.0.0.bn1.bias:[32]***blocks.0.0.bn1.running_mean:[32]***blocks.0.0.bn1.running_var:[32]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[8, 32, 1, 1]***blocks.0.0.se.conv_reduce.bias:[8]***blocks.0.0.se.conv_expand.weight:[32, 8, 1, 1]***blocks.0.0.se.conv_expand.bias:[32]***blocks.0.0.conv_pw.weight:[16, 32, 1, 1]***blocks.0.0.bn2.weight:[16]***blocks.0.0.bn2.bias:[16]***blocks.0.0.bn2.running_mean:[16]***blocks.0.0.bn2.running_var:[16]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[16, 1, 3, 3]***blocks.0.1.bn1.weight:[16]***blocks.0.1.bn1.bias:[16]***blocks.0.1.bn1.running_mean:[16]***blocks.0.1.bn1.running_var:[16]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[4, 16, 1, 1]***blocks.0.1.se.conv_reduce.bias:[4]***blocks.0.1.se.conv_expand.weight:[16, 4, 1, 1]***blocks.0.1.se.conv_expand.bias:[16]***blocks.0.1.conv_pw.weight:[16, 16, 1, 1]***blocks.0.1.bn2.weight:[16]***blocks.0.1.bn2.bias:[16]***blocks.0.1.bn2.running_mean:[16]***blocks.0.1.bn2.running_var:[16]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[48, 16, 1, 1]***blocks.1.0.bn1.weight:[48]***blocks.1.0.bn1.bias:[48]***blocks.1.0.bn1.running_mean:[48]***blocks.1.0.bn1.running_var:[48]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[48, 1, 3, 3]***blocks.1.0.bn2.weight:[48]***blocks.1.0.bn2.bias:[48]***blocks.1.0.bn2.running_mean:[48]***blocks.1.0.bn2.running_var:[48]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[4, 48, 1, 1]***blocks.1.0.se.conv_reduce.bias:[4]***blocks.1.0.se.conv_expand.weight:[48, 4, 1, 1]***blocks.1.0.se.conv_expand.bias:[48]***blocks.1.0.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.0.bn3.weight:[12]***blocks.1.0.bn3.bias:[12]***blocks.1.0.bn3.running_mean:[12]***blocks.1.0.bn3.running_var:[12]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[62, 12, 1, 1]***blocks.1.1.bn1.weight:[62]***blocks.1.1.bn1.bias:[62]***blocks.1.1.bn1.running_mean:[62]***blocks.1.1.bn1.running_var:[62]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[62, 1, 3, 3]***blocks.1.1.bn2.weight:[62]***blocks.1.1.bn2.bias:[62]***blocks.1.1.bn2.running_mean:[62]***blocks.1.1.bn2.running_var:[62]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[6, 62, 1, 1]***blocks.1.1.se.conv_reduce.bias:[6]***blocks.1.1.se.conv_expand.weight:[62, 6, 1, 1]***blocks.1.1.se.conv_expand.bias:[62]***blocks.1.1.conv_pwl.weight:[12, 62, 1, 1]***blocks.1.1.bn3.weight:[12]***blocks.1.1.bn3.bias:[12]***blocks.1.1.bn3.running_mean:[12]***blocks.1.1.bn3.running_var:[12]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[48, 12, 1, 1]***blocks.1.2.bn1.weight:[48]***blocks.1.2.bn1.bias:[48]***blocks.1.2.bn1.running_mean:[48]***blocks.1.2.bn1.running_var:[48]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[48, 1, 3, 3]***blocks.1.2.bn2.weight:[48]***blocks.1.2.bn2.bias:[48]***blocks.1.2.bn2.running_mean:[48]***blocks.1.2.bn2.running_var:[48]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[6, 48, 1, 1]***blocks.1.2.se.conv_reduce.bias:[6]***blocks.1.2.se.conv_expand.weight:[48, 6, 1, 1]***blocks.1.2.se.conv_expand.bias:[48]***blocks.1.2.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.2.bn3.weight:[12]***blocks.1.2.bn3.bias:[12]***blocks.1.2.bn3.running_mean:[12]***blocks.1.2.bn3.running_var:[12]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[70, 12, 1, 1]***blocks.2.0.bn1.weight:[70]***blocks.2.0.bn1.bias:[70]***blocks.2.0.bn1.running_mean:[70]***blocks.2.0.bn1.running_var:[70]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[70, 1, 5, 5]***blocks.2.0.bn2.weight:[70]***blocks.2.0.bn2.bias:[70]***blocks.2.0.bn2.running_mean:[70]***blocks.2.0.bn2.running_var:[70]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[6, 70, 1, 1]***blocks.2.0.se.conv_reduce.bias:[6]***blocks.2.0.se.conv_expand.weight:[70, 6, 1, 1]***blocks.2.0.se.conv_expand.bias:[70]***blocks.2.0.conv_pwl.weight:[35, 70, 1, 1]***blocks.2.0.bn3.weight:[35]***blocks.2.0.bn3.bias:[35]***blocks.2.0.bn3.running_mean:[35]***blocks.2.0.bn3.running_var:[35]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[61, 35, 1, 1]***blocks.2.1.bn1.weight:[61]***blocks.2.1.bn1.bias:[61]***blocks.2.1.bn1.running_mean:[61]***blocks.2.1.bn1.running_var:[61]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[61, 1, 5, 5]***blocks.2.1.bn2.weight:[61]***blocks.2.1.bn2.bias:[61]***blocks.2.1.bn2.running_mean:[61]***blocks.2.1.bn2.running_var:[61]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[10, 61, 1, 1]***blocks.2.1.se.conv_reduce.bias:[10]***blocks.2.1.se.conv_expand.weight:[61, 10, 1, 1]***blocks.2.1.se.conv_expand.bias:[61]***blocks.2.1.conv_pwl.weight:[35, 61, 1, 1]***blocks.2.1.bn3.weight:[35]***blocks.2.1.bn3.bias:[35]***blocks.2.1.bn3.running_mean:[35]***blocks.2.1.bn3.running_var:[35]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[51, 35, 1, 1]***blocks.2.2.bn1.weight:[51]***blocks.2.2.bn1.bias:[51]***blocks.2.2.bn1.running_mean:[51]***blocks.2.2.bn1.running_var:[51]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[51, 1, 5, 5]***blocks.2.2.bn2.weight:[51]***blocks.2.2.bn2.bias:[51]***blocks.2.2.bn2.running_mean:[51]***blocks.2.2.bn2.running_var:[51]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[10, 51, 1, 1]***blocks.2.2.se.conv_reduce.bias:[10]***blocks.2.2.se.conv_expand.weight:[51, 10, 1, 1]***blocks.2.2.se.conv_expand.bias:[51]***blocks.2.2.conv_pwl.weight:[35, 51, 1, 1]***blocks.2.2.bn3.weight:[35]***blocks.2.2.bn3.bias:[35]***blocks.2.2.bn3.running_mean:[35]***blocks.2.2.bn3.running_var:[35]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[175, 35, 1, 1]***blocks.3.0.bn1.weight:[175]***blocks.3.0.bn1.bias:[175]***blocks.3.0.bn1.running_mean:[175]***blocks.3.0.bn1.running_var:[175]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[175, 1, 3, 3]***blocks.3.0.bn2.weight:[175]***blocks.3.0.bn2.bias:[175]***blocks.3.0.bn2.running_mean:[175]***blocks.3.0.bn2.running_var:[175]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[10, 175, 1, 1]***blocks.3.0.se.conv_reduce.bias:[10]***blocks.3.0.se.conv_expand.weight:[175, 10, 1, 1]***blocks.3.0.se.conv_expand.bias:[175]***blocks.3.0.conv_pwl.weight:[74, 175, 1, 1]***blocks.3.0.bn3.weight:[74]***blocks.3.0.bn3.bias:[74]***blocks.3.0.bn3.running_mean:[74]***blocks.3.0.bn3.running_var:[74]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[188, 74, 1, 1]***blocks.3.1.bn1.weight:[188]***blocks.3.1.bn1.bias:[188]***blocks.3.1.bn1.running_mean:[188]***blocks.3.1.bn1.running_var:[188]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[188, 1, 3, 3]***blocks.3.1.bn2.weight:[188]***blocks.3.1.bn2.bias:[188]***blocks.3.1.bn2.running_mean:[188]***blocks.3.1.bn2.running_var:[188]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[20, 188, 1, 1]***blocks.3.1.se.conv_reduce.bias:[20]***blocks.3.1.se.conv_expand.weight:[188, 20, 1, 1]***blocks.3.1.se.conv_expand.bias:[188]***blocks.3.1.conv_pwl.weight:[74, 188, 1, 1]***blocks.3.1.bn3.weight:[74]***blocks.3.1.bn3.bias:[74]***blocks.3.1.bn3.running_mean:[74]***blocks.3.1.bn3.running_var:[74]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[137, 74, 1, 1]***blocks.3.2.bn1.weight:[137]***blocks.3.2.bn1.bias:[137]***blocks.3.2.bn1.running_mean:[137]***blocks.3.2.bn1.running_var:[137]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[137, 1, 3, 3]***blocks.3.2.bn2.weight:[137]***blocks.3.2.bn2.bias:[137]***blocks.3.2.bn2.running_mean:[137]***blocks.3.2.bn2.running_var:[137]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[20, 137, 1, 1]***blocks.3.2.se.conv_reduce.bias:[20]***blocks.3.2.se.conv_expand.weight:[137, 20, 1, 1]***blocks.3.2.se.conv_expand.bias:[137]***blocks.3.2.conv_pwl.weight:[74, 137, 1, 1]***blocks.3.2.bn3.weight:[74]***blocks.3.2.bn3.bias:[74]***blocks.3.2.bn3.running_mean:[74]***blocks.3.2.bn3.running_var:[74]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[164, 74, 1, 1]***blocks.3.3.bn1.weight:[164]***blocks.3.3.bn1.bias:[164]***blocks.3.3.bn1.running_mean:[164]***blocks.3.3.bn1.running_var:[164]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[164, 1, 3, 3]***blocks.3.3.bn2.weight:[164]***blocks.3.3.bn2.bias:[164]***blocks.3.3.bn2.running_mean:[164]***blocks.3.3.bn2.running_var:[164]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[20, 164, 1, 1]***blocks.3.3.se.conv_reduce.bias:[20]***blocks.3.3.se.conv_expand.weight:[164, 20, 1, 1]***blocks.3.3.se.conv_expand.bias:[164]***blocks.3.3.conv_pwl.weight:[74, 164, 1, 1]***blocks.3.3.bn3.weight:[74]***blocks.3.3.bn3.bias:[74]***blocks.3.3.bn3.running_mean:[74]***blocks.3.3.bn3.running_var:[74]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[399, 74, 1, 1]***blocks.4.0.bn1.weight:[399]***blocks.4.0.bn1.bias:[399]***blocks.4.0.bn1.running_mean:[399]***blocks.4.0.bn1.running_var:[399]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[399, 1, 5, 5]***blocks.4.0.bn2.weight:[399]***blocks.4.0.bn2.bias:[399]***blocks.4.0.bn2.running_mean:[399]***blocks.4.0.bn2.running_var:[399]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[20, 399, 1, 1]***blocks.4.0.se.conv_reduce.bias:[20]***blocks.4.0.se.conv_expand.weight:[399, 20, 1, 1]***blocks.4.0.se.conv_expand.bias:[399]***blocks.4.0.conv_pwl.weight:[67, 399, 1, 1]***blocks.4.0.bn3.weight:[67]***blocks.4.0.bn3.bias:[67]***blocks.4.0.bn3.running_mean:[67]***blocks.4.0.bn3.running_var:[67]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[201, 67, 1, 1]***blocks.4.1.bn1.weight:[201]***blocks.4.1.bn1.bias:[201]***blocks.4.1.bn1.running_mean:[201]***blocks.4.1.bn1.running_var:[201]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[201, 1, 5, 5]***blocks.4.1.bn2.weight:[201]***blocks.4.1.bn2.bias:[201]***blocks.4.1.bn2.running_mean:[201]***blocks.4.1.bn2.running_var:[201]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[28, 201, 1, 1]***blocks.4.1.se.conv_reduce.bias:[28]***blocks.4.1.se.conv_expand.weight:[201, 28, 1, 1]***blocks.4.1.se.conv_expand.bias:[201]***blocks.4.1.conv_pwl.weight:[67, 201, 1, 1]***blocks.4.1.bn3.weight:[67]***blocks.4.1.bn3.bias:[67]***blocks.4.1.bn3.running_mean:[67]***blocks.4.1.bn3.running_var:[67]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[160, 67, 1, 1]***blocks.4.2.bn1.weight:[160]***blocks.4.2.bn1.bias:[160]***blocks.4.2.bn1.running_mean:[160]***blocks.4.2.bn1.running_var:[160]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[160, 1, 5, 5]***blocks.4.2.bn2.weight:[160]***blocks.4.2.bn2.bias:[160]***blocks.4.2.bn2.running_mean:[160]***blocks.4.2.bn2.running_var:[160]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[28, 160, 1, 1]***blocks.4.2.se.conv_reduce.bias:[28]***blocks.4.2.se.conv_expand.weight:[160, 28, 1, 1]***blocks.4.2.se.conv_expand.bias:[160]***blocks.4.2.conv_pwl.weight:[67, 160, 1, 1]***blocks.4.2.bn3.weight:[67]***blocks.4.2.bn3.bias:[67]***blocks.4.2.bn3.running_mean:[67]***blocks.4.2.bn3.running_var:[67]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[213, 67, 1, 1]***blocks.4.3.bn1.weight:[213]***blocks.4.3.bn1.bias:[213]***blocks.4.3.bn1.running_mean:[213]***blocks.4.3.bn1.running_var:[213]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[213, 1, 5, 5]***blocks.4.3.bn2.weight:[213]***blocks.4.3.bn2.bias:[213]***blocks.4.3.bn2.running_mean:[213]***blocks.4.3.bn2.running_var:[213]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[28, 213, 1, 1]***blocks.4.3.se.conv_reduce.bias:[28]***blocks.4.3.se.conv_expand.weight:[213, 28, 1, 1]***blocks.4.3.se.conv_expand.bias:[213]***blocks.4.3.conv_pwl.weight:[67, 213, 1, 1]***blocks.4.3.bn3.weight:[67]***blocks.4.3.bn3.bias:[67]***blocks.4.3.bn3.running_mean:[67]***blocks.4.3.bn3.running_var:[67]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[637, 67, 1, 1]***blocks.5.0.bn1.weight:[637]***blocks.5.0.bn1.bias:[637]***blocks.5.0.bn1.running_mean:[637]***blocks.5.0.bn1.running_var:[637]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[637, 1, 5, 5]***blocks.5.0.bn2.weight:[637]***blocks.5.0.bn2.bias:[637]***blocks.5.0.bn2.running_mean:[637]***blocks.5.0.bn2.running_var:[637]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[27, 637, 1, 1]***blocks.5.0.se.conv_reduce.bias:[27]***blocks.5.0.se.conv_expand.weight:[637, 27, 1, 1]***blocks.5.0.se.conv_expand.bias:[637]***blocks.5.0.conv_pwl.weight:[192, 637, 1, 1]***blocks.5.0.bn3.weight:[192]***blocks.5.0.bn3.bias:[192]***blocks.5.0.bn3.running_mean:[192]***blocks.5.0.bn3.running_var:[192]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[806, 192, 1, 1]***blocks.5.1.bn1.weight:[806]***blocks.5.1.bn1.bias:[806]***blocks.5.1.bn1.running_mean:[806]***blocks.5.1.bn1.running_var:[806]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[806, 1, 5, 5]***blocks.5.1.bn2.weight:[806]***blocks.5.1.bn2.bias:[806]***blocks.5.1.bn2.running_mean:[806]***blocks.5.1.bn2.running_var:[806]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[48, 806, 1, 1]***blocks.5.1.se.conv_reduce.bias:[48]***blocks.5.1.se.conv_expand.weight:[806, 48, 1, 1]***blocks.5.1.se.conv_expand.bias:[806]***blocks.5.1.conv_pwl.weight:[192, 806, 1, 1]***blocks.5.1.bn3.weight:[192]***blocks.5.1.bn3.bias:[192]***blocks.5.1.bn3.running_mean:[192]***blocks.5.1.bn3.running_var:[192]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[798, 192, 1, 1]***blocks.5.2.bn1.weight:[798]***blocks.5.2.bn1.bias:[798]***blocks.5.2.bn1.running_mean:[798]***blocks.5.2.bn1.running_var:[798]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[798, 1, 5, 5]***blocks.5.2.bn2.weight:[798]***blocks.5.2.bn2.bias:[798]***blocks.5.2.bn2.running_mean:[798]***blocks.5.2.bn2.running_var:[798]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[48, 798, 1, 1]***blocks.5.2.se.conv_reduce.bias:[48]***blocks.5.2.se.conv_expand.weight:[798, 48, 1, 1]***blocks.5.2.se.conv_expand.bias:[798]***blocks.5.2.conv_pwl.weight:[192, 798, 1, 1]***blocks.5.2.bn3.weight:[192]***blocks.5.2.bn3.bias:[192]***blocks.5.2.bn3.running_mean:[192]***blocks.5.2.bn3.running_var:[192]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[891, 192, 1, 1]***blocks.5.3.bn1.weight:[891]***blocks.5.3.bn1.bias:[891]***blocks.5.3.bn1.running_mean:[891]***blocks.5.3.bn1.running_var:[891]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[891, 1, 5, 5]***blocks.5.3.bn2.weight:[891]***blocks.5.3.bn2.bias:[891]***blocks.5.3.bn2.running_mean:[891]***blocks.5.3.bn2.running_var:[891]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[48, 891, 1, 1]***blocks.5.3.se.conv_reduce.bias:[48]***blocks.5.3.se.conv_expand.weight:[891, 48, 1, 1]***blocks.5.3.se.conv_expand.bias:[891]***blocks.5.3.conv_pwl.weight:[192, 891, 1, 1]***blocks.5.3.bn3.weight:[192]***blocks.5.3.bn3.bias:[192]***blocks.5.3.bn3.running_mean:[192]***blocks.5.3.bn3.running_var:[192]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[990, 192, 1, 1]***blocks.5.4.bn1.weight:[990]***blocks.5.4.bn1.bias:[990]***blocks.5.4.bn1.running_mean:[990]***blocks.5.4.bn1.running_var:[990]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[990, 1, 5, 5]***blocks.5.4.bn2.weight:[990]***blocks.5.4.bn2.bias:[990]***blocks.5.4.bn2.running_mean:[990]***blocks.5.4.bn2.running_var:[990]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[48, 990, 1, 1]***blocks.5.4.se.conv_reduce.bias:[48]***blocks.5.4.se.conv_expand.weight:[990, 48, 1, 1]***blocks.5.4.se.conv_expand.bias:[990]***blocks.5.4.conv_pwl.weight:[192, 990, 1, 1]***blocks.5.4.bn3.weight:[192]***blocks.5.4.bn3.bias:[192]***blocks.5.4.bn3.running_mean:[192]***blocks.5.4.bn3.running_var:[192]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1152, 192, 1, 1]***blocks.6.0.bn1.weight:[1152]***blocks.6.0.bn1.bias:[1152]***blocks.6.0.bn1.running_mean:[1152]***blocks.6.0.bn1.running_var:[1152]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1152, 1, 3, 3]***blocks.6.0.bn2.weight:[1152]***blocks.6.0.bn2.bias:[1152]***blocks.6.0.bn2.running_mean:[1152]***blocks.6.0.bn2.running_var:[1152]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[48, 1152, 1, 1]***blocks.6.0.se.conv_reduce.bias:[48]***blocks.6.0.se.conv_expand.weight:[1152, 48, 1, 1]***blocks.6.0.se.conv_expand.bias:[1152]***blocks.6.0.conv_pwl.weight:[320, 1152, 1, 1]***blocks.6.0.bn3.weight:[320]***blocks.6.0.bn3.bias:[320]***blocks.6.0.bn3.running_mean:[320]***blocks.6.0.bn3.running_var:[320]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[1912, 320, 1, 1]***blocks.6.1.bn1.weight:[1912]***blocks.6.1.bn1.bias:[1912]***blocks.6.1.bn1.running_mean:[1912]***blocks.6.1.bn1.running_var:[1912]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[1912, 1, 3, 3]***blocks.6.1.bn2.weight:[1912]***blocks.6.1.bn2.bias:[1912]***blocks.6.1.bn2.running_mean:[1912]***blocks.6.1.bn2.running_var:[1912]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[80, 1912, 1, 1]***blocks.6.1.se.conv_reduce.bias:[80]***blocks.6.1.se.conv_expand.weight:[1912, 80, 1, 1]***blocks.6.1.se.conv_expand.bias:[1912]***blocks.6.1.conv_pwl.weight:[320, 1912, 1, 1]***blocks.6.1.bn3.weight:[320]***blocks.6.1.bn3.bias:[320]***blocks.6.1.bn3.running_mean:[320]***blocks.6.1.bn3.running_var:[320]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1280, 320, 1, 1]***bn2.weight:[1280]***bn2.bias:[1280]***bn2.running_mean:[1280]***bn2.running_var:[1280]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1280]***classifier.bias:[1000]
|
pytorch-image-models/timm/models/focalnet.py
ADDED
@@ -0,0 +1,652 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" FocalNet
|
2 |
+
|
3 |
+
As described in `Focal Modulation Networks` - https://arxiv.org/abs/2203.11926
|
4 |
+
|
5 |
+
Significant modifications and refactoring from the original impl at https://github.com/microsoft/FocalNet
|
6 |
+
|
7 |
+
This impl is/has:
|
8 |
+
* fully convolutional, NCHW tensor layout throughout, seemed to have minimal performance impact but more flexible
|
9 |
+
* re-ordered downsample / layer so that striding always at beginning of layer (stage)
|
10 |
+
* no input size constraints or input resolution/H/W tracking through the model
|
11 |
+
* torchscript fixed and a number of quirks cleaned up
|
12 |
+
* feature extraction support via `features_only=True`
|
13 |
+
"""
|
14 |
+
# --------------------------------------------------------
|
15 |
+
# FocalNets -- Focal Modulation Networks
|
16 |
+
# Copyright (c) 2022 Microsoft
|
17 |
+
# Licensed under The MIT License [see LICENSE for details]
|
18 |
+
# Written by Jianwei Yang ([email protected])
|
19 |
+
# --------------------------------------------------------
|
20 |
+
from functools import partial
|
21 |
+
from typing import Callable, Optional, Tuple
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import torch.utils.checkpoint as checkpoint
|
26 |
+
|
27 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
28 |
+
from timm.layers import Mlp, DropPath, LayerNorm2d, trunc_normal_, ClassifierHead, NormMlpClassifierHead
|
29 |
+
from ._builder import build_model_with_cfg
|
30 |
+
from ._manipulate import named_apply
|
31 |
+
from ._registry import generate_default_cfgs, register_model
|
32 |
+
|
33 |
+
__all__ = ['FocalNet']
|
34 |
+
|
35 |
+
|
36 |
+
class FocalModulation(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
dim: int,
|
40 |
+
focal_window,
|
41 |
+
focal_level: int,
|
42 |
+
focal_factor: int = 2,
|
43 |
+
bias: bool = True,
|
44 |
+
use_post_norm: bool = False,
|
45 |
+
normalize_modulator: bool = False,
|
46 |
+
proj_drop: float = 0.,
|
47 |
+
norm_layer: Callable = LayerNorm2d,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.dim = dim
|
52 |
+
self.focal_window = focal_window
|
53 |
+
self.focal_level = focal_level
|
54 |
+
self.focal_factor = focal_factor
|
55 |
+
self.use_post_norm = use_post_norm
|
56 |
+
self.normalize_modulator = normalize_modulator
|
57 |
+
self.input_split = [dim, dim, self.focal_level + 1]
|
58 |
+
|
59 |
+
self.f = nn.Conv2d(dim, 2 * dim + (self.focal_level + 1), kernel_size=1, bias=bias)
|
60 |
+
self.h = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
|
61 |
+
|
62 |
+
self.act = nn.GELU()
|
63 |
+
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
64 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
65 |
+
self.focal_layers = nn.ModuleList()
|
66 |
+
|
67 |
+
self.kernel_sizes = []
|
68 |
+
for k in range(self.focal_level):
|
69 |
+
kernel_size = self.focal_factor * k + self.focal_window
|
70 |
+
self.focal_layers.append(nn.Sequential(
|
71 |
+
nn.Conv2d(dim, dim, kernel_size=kernel_size, groups=dim, padding=kernel_size // 2, bias=False),
|
72 |
+
nn.GELU(),
|
73 |
+
))
|
74 |
+
self.kernel_sizes.append(kernel_size)
|
75 |
+
self.norm = norm_layer(dim) if self.use_post_norm else nn.Identity()
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
# pre linear projection
|
79 |
+
x = self.f(x)
|
80 |
+
q, ctx, gates = torch.split(x, self.input_split, 1)
|
81 |
+
|
82 |
+
# context aggreation
|
83 |
+
ctx_all = 0
|
84 |
+
for l, focal_layer in enumerate(self.focal_layers):
|
85 |
+
ctx = focal_layer(ctx)
|
86 |
+
ctx_all = ctx_all + ctx * gates[:, l:l + 1]
|
87 |
+
ctx_global = self.act(ctx.mean((2, 3), keepdim=True))
|
88 |
+
ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:]
|
89 |
+
|
90 |
+
# normalize context
|
91 |
+
if self.normalize_modulator:
|
92 |
+
ctx_all = ctx_all / (self.focal_level + 1)
|
93 |
+
|
94 |
+
# focal modulation
|
95 |
+
x_out = q * self.h(ctx_all)
|
96 |
+
x_out = self.norm(x_out)
|
97 |
+
|
98 |
+
# post linear projection
|
99 |
+
x_out = self.proj(x_out)
|
100 |
+
x_out = self.proj_drop(x_out)
|
101 |
+
return x_out
|
102 |
+
|
103 |
+
|
104 |
+
class LayerScale2d(nn.Module):
|
105 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
106 |
+
super().__init__()
|
107 |
+
self.inplace = inplace
|
108 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
gamma = self.gamma.view(1, -1, 1, 1)
|
112 |
+
return x.mul_(gamma) if self.inplace else x * gamma
|
113 |
+
|
114 |
+
|
115 |
+
class FocalNetBlock(nn.Module):
|
116 |
+
""" Focal Modulation Network Block.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
dim: int,
|
122 |
+
mlp_ratio: float = 4.,
|
123 |
+
focal_level: int = 1,
|
124 |
+
focal_window: int = 3,
|
125 |
+
use_post_norm: bool = False,
|
126 |
+
use_post_norm_in_modulation: bool = False,
|
127 |
+
normalize_modulator: bool = False,
|
128 |
+
layerscale_value: float = 1e-4,
|
129 |
+
proj_drop: float = 0.,
|
130 |
+
drop_path: float = 0.,
|
131 |
+
act_layer: Callable = nn.GELU,
|
132 |
+
norm_layer: Callable = LayerNorm2d,
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
dim: Number of input channels.
|
137 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
138 |
+
focal_level: Number of focal levels.
|
139 |
+
focal_window: Focal window size at first focal level.
|
140 |
+
use_post_norm: Whether to use layer norm after modulation.
|
141 |
+
use_post_norm_in_modulation: Whether to use layer norm in modulation.
|
142 |
+
layerscale_value: Initial layerscale value.
|
143 |
+
proj_drop: Dropout rate.
|
144 |
+
drop_path: Stochastic depth rate.
|
145 |
+
act_layer: Activation layer.
|
146 |
+
norm_layer: Normalization layer.
|
147 |
+
"""
|
148 |
+
super().__init__()
|
149 |
+
self.dim = dim
|
150 |
+
self.mlp_ratio = mlp_ratio
|
151 |
+
|
152 |
+
self.focal_window = focal_window
|
153 |
+
self.focal_level = focal_level
|
154 |
+
self.use_post_norm = use_post_norm
|
155 |
+
|
156 |
+
self.norm1 = norm_layer(dim) if not use_post_norm else nn.Identity()
|
157 |
+
self.modulation = FocalModulation(
|
158 |
+
dim,
|
159 |
+
focal_window=focal_window,
|
160 |
+
focal_level=self.focal_level,
|
161 |
+
use_post_norm=use_post_norm_in_modulation,
|
162 |
+
normalize_modulator=normalize_modulator,
|
163 |
+
proj_drop=proj_drop,
|
164 |
+
norm_layer=norm_layer,
|
165 |
+
)
|
166 |
+
self.norm1_post = norm_layer(dim) if use_post_norm else nn.Identity()
|
167 |
+
self.ls1 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity()
|
168 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
169 |
+
|
170 |
+
self.norm2 = norm_layer(dim) if not use_post_norm else nn.Identity()
|
171 |
+
self.mlp = Mlp(
|
172 |
+
in_features=dim,
|
173 |
+
hidden_features=int(dim * mlp_ratio),
|
174 |
+
act_layer=act_layer,
|
175 |
+
drop=proj_drop,
|
176 |
+
use_conv=True,
|
177 |
+
)
|
178 |
+
self.norm2_post = norm_layer(dim) if use_post_norm else nn.Identity()
|
179 |
+
self.ls2 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity()
|
180 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
shortcut = x
|
184 |
+
|
185 |
+
# Focal Modulation
|
186 |
+
x = self.norm1(x)
|
187 |
+
x = self.modulation(x)
|
188 |
+
x = self.norm1_post(x)
|
189 |
+
x = shortcut + self.drop_path1(self.ls1(x))
|
190 |
+
|
191 |
+
# FFN
|
192 |
+
x = x + self.drop_path2(self.ls2(self.norm2_post(self.mlp(self.norm2(x)))))
|
193 |
+
|
194 |
+
return x
|
195 |
+
|
196 |
+
|
197 |
+
class FocalNetStage(nn.Module):
|
198 |
+
""" A basic Focal Transformer layer for one stage.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
dim: int,
|
204 |
+
out_dim: int,
|
205 |
+
depth: int,
|
206 |
+
mlp_ratio: float = 4.,
|
207 |
+
downsample: bool = True,
|
208 |
+
focal_level: int = 1,
|
209 |
+
focal_window: int = 1,
|
210 |
+
use_overlap_down: bool = False,
|
211 |
+
use_post_norm: bool = False,
|
212 |
+
use_post_norm_in_modulation: bool = False,
|
213 |
+
normalize_modulator: bool = False,
|
214 |
+
layerscale_value: float = 1e-4,
|
215 |
+
proj_drop: float = 0.,
|
216 |
+
drop_path: float = 0.,
|
217 |
+
norm_layer: Callable = LayerNorm2d,
|
218 |
+
):
|
219 |
+
"""
|
220 |
+
Args:
|
221 |
+
dim: Number of input channels.
|
222 |
+
out_dim: Number of output channels.
|
223 |
+
depth: Number of blocks.
|
224 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
225 |
+
downsample: Downsample layer at start of the layer.
|
226 |
+
focal_level: Number of focal levels
|
227 |
+
focal_window: Focal window size at first focal level
|
228 |
+
use_overlap_down: User overlapped convolution in downsample layer.
|
229 |
+
use_post_norm: Whether to use layer norm after modulation.
|
230 |
+
use_post_norm_in_modulation: Whether to use layer norm in modulation.
|
231 |
+
layerscale_value: Initial layerscale value
|
232 |
+
proj_drop: Dropout rate for projections.
|
233 |
+
drop_path: Stochastic depth rate.
|
234 |
+
norm_layer: Normalization layer.
|
235 |
+
"""
|
236 |
+
super().__init__()
|
237 |
+
self.dim = dim
|
238 |
+
self.depth = depth
|
239 |
+
self.grad_checkpointing = False
|
240 |
+
|
241 |
+
if downsample:
|
242 |
+
self.downsample = Downsample(
|
243 |
+
in_chs=dim,
|
244 |
+
out_chs=out_dim,
|
245 |
+
stride=2,
|
246 |
+
overlap=use_overlap_down,
|
247 |
+
norm_layer=norm_layer,
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
self.downsample = nn.Identity()
|
251 |
+
|
252 |
+
# build blocks
|
253 |
+
self.blocks = nn.ModuleList([
|
254 |
+
FocalNetBlock(
|
255 |
+
dim=out_dim,
|
256 |
+
mlp_ratio=mlp_ratio,
|
257 |
+
focal_level=focal_level,
|
258 |
+
focal_window=focal_window,
|
259 |
+
use_post_norm=use_post_norm,
|
260 |
+
use_post_norm_in_modulation=use_post_norm_in_modulation,
|
261 |
+
normalize_modulator=normalize_modulator,
|
262 |
+
layerscale_value=layerscale_value,
|
263 |
+
proj_drop=proj_drop,
|
264 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
265 |
+
norm_layer=norm_layer,
|
266 |
+
)
|
267 |
+
for i in range(depth)])
|
268 |
+
|
269 |
+
@torch.jit.ignore
|
270 |
+
def set_grad_checkpointing(self, enable=True):
|
271 |
+
self.grad_checkpointing = enable
|
272 |
+
|
273 |
+
def forward(self, x):
|
274 |
+
x = self.downsample(x)
|
275 |
+
for blk in self.blocks:
|
276 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
277 |
+
x = checkpoint.checkpoint(blk, x)
|
278 |
+
else:
|
279 |
+
x = blk(x)
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
class Downsample(nn.Module):
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
in_chs: int,
|
288 |
+
out_chs: int,
|
289 |
+
stride: int = 4,
|
290 |
+
overlap: bool = False,
|
291 |
+
norm_layer: Optional[Callable] = None,
|
292 |
+
):
|
293 |
+
"""
|
294 |
+
|
295 |
+
Args:
|
296 |
+
in_chs: Number of input image channels.
|
297 |
+
out_chs: Number of linear projection output channels.
|
298 |
+
stride: Downsample stride.
|
299 |
+
overlap: Use overlapping convolutions if True.
|
300 |
+
norm_layer: Normalization layer.
|
301 |
+
"""
|
302 |
+
super().__init__()
|
303 |
+
self.stride = stride
|
304 |
+
padding = 0
|
305 |
+
kernel_size = stride
|
306 |
+
if overlap:
|
307 |
+
assert stride in (2, 4)
|
308 |
+
if stride == 4:
|
309 |
+
kernel_size, padding = 7, 2
|
310 |
+
elif stride == 2:
|
311 |
+
kernel_size, padding = 3, 1
|
312 |
+
self.proj = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding)
|
313 |
+
self.norm = norm_layer(out_chs) if norm_layer is not None else nn.Identity()
|
314 |
+
|
315 |
+
def forward(self, x):
|
316 |
+
x = self.proj(x)
|
317 |
+
x = self.norm(x)
|
318 |
+
return x
|
319 |
+
|
320 |
+
|
321 |
+
class FocalNet(nn.Module):
|
322 |
+
"""" Focal Modulation Networks (FocalNets)
|
323 |
+
"""
|
324 |
+
|
325 |
+
def __init__(
|
326 |
+
self,
|
327 |
+
in_chans: int = 3,
|
328 |
+
num_classes: int = 1000,
|
329 |
+
global_pool: str = 'avg',
|
330 |
+
embed_dim: int = 96,
|
331 |
+
depths: Tuple[int, ...] = (2, 2, 6, 2),
|
332 |
+
mlp_ratio: float = 4.,
|
333 |
+
focal_levels: Tuple[int, ...] = (2, 2, 2, 2),
|
334 |
+
focal_windows: Tuple[int, ...] = (3, 3, 3, 3),
|
335 |
+
use_overlap_down: bool = False,
|
336 |
+
use_post_norm: bool = False,
|
337 |
+
use_post_norm_in_modulation: bool = False,
|
338 |
+
normalize_modulator: bool = False,
|
339 |
+
head_hidden_size: Optional[int] = None,
|
340 |
+
head_init_scale: float = 1.0,
|
341 |
+
layerscale_value: Optional[float] = None,
|
342 |
+
drop_rate: bool = 0.,
|
343 |
+
proj_drop_rate: bool = 0.,
|
344 |
+
drop_path_rate: bool = 0.1,
|
345 |
+
norm_layer: Callable = partial(LayerNorm2d, eps=1e-5),
|
346 |
+
):
|
347 |
+
"""
|
348 |
+
Args:
|
349 |
+
in_chans: Number of input image channels.
|
350 |
+
num_classes: Number of classes for classification head.
|
351 |
+
embed_dim: Patch embedding dimension.
|
352 |
+
depths: Depth of each Focal Transformer layer.
|
353 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
354 |
+
focal_levels: How many focal levels at all stages. Note that this excludes the finest-grain level.
|
355 |
+
focal_windows: The focal window size at all stages.
|
356 |
+
use_overlap_down: Whether to use convolutional embedding.
|
357 |
+
use_post_norm: Whether to use layernorm after modulation (it helps stablize training of large models)
|
358 |
+
layerscale_value: Value for layer scale.
|
359 |
+
drop_rate: Dropout rate.
|
360 |
+
drop_path_rate: Stochastic depth rate.
|
361 |
+
norm_layer: Normalization layer.
|
362 |
+
"""
|
363 |
+
super().__init__()
|
364 |
+
|
365 |
+
self.num_layers = len(depths)
|
366 |
+
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
|
367 |
+
|
368 |
+
self.num_classes = num_classes
|
369 |
+
self.embed_dim = embed_dim
|
370 |
+
self.num_features = self.head_hidden_size = embed_dim[-1]
|
371 |
+
self.feature_info = []
|
372 |
+
|
373 |
+
self.stem = Downsample(
|
374 |
+
in_chs=in_chans,
|
375 |
+
out_chs=embed_dim[0],
|
376 |
+
overlap=use_overlap_down,
|
377 |
+
norm_layer=norm_layer,
|
378 |
+
)
|
379 |
+
in_dim = embed_dim[0]
|
380 |
+
|
381 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
382 |
+
layers = []
|
383 |
+
for i_layer in range(self.num_layers):
|
384 |
+
out_dim = embed_dim[i_layer]
|
385 |
+
layer = FocalNetStage(
|
386 |
+
dim=in_dim,
|
387 |
+
out_dim=out_dim,
|
388 |
+
depth=depths[i_layer],
|
389 |
+
mlp_ratio=mlp_ratio,
|
390 |
+
downsample=i_layer > 0,
|
391 |
+
focal_level=focal_levels[i_layer],
|
392 |
+
focal_window=focal_windows[i_layer],
|
393 |
+
use_overlap_down=use_overlap_down,
|
394 |
+
use_post_norm=use_post_norm,
|
395 |
+
use_post_norm_in_modulation=use_post_norm_in_modulation,
|
396 |
+
normalize_modulator=normalize_modulator,
|
397 |
+
layerscale_value=layerscale_value,
|
398 |
+
proj_drop=proj_drop_rate,
|
399 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
400 |
+
norm_layer=norm_layer,
|
401 |
+
)
|
402 |
+
in_dim = out_dim
|
403 |
+
layers += [layer]
|
404 |
+
self.feature_info += [dict(num_chs=out_dim, reduction=4 * 2 ** i_layer, module=f'layers.{i_layer}')]
|
405 |
+
|
406 |
+
self.layers = nn.Sequential(*layers)
|
407 |
+
|
408 |
+
if head_hidden_size:
|
409 |
+
self.norm = nn.Identity()
|
410 |
+
self.head_hidden_size = head_hidden_size
|
411 |
+
self.head = NormMlpClassifierHead(
|
412 |
+
self.num_features,
|
413 |
+
num_classes,
|
414 |
+
hidden_size=head_hidden_size,
|
415 |
+
pool_type=global_pool,
|
416 |
+
drop_rate=drop_rate,
|
417 |
+
norm_layer=norm_layer,
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
self.norm = norm_layer(self.num_features)
|
421 |
+
self.head = ClassifierHead(
|
422 |
+
self.num_features,
|
423 |
+
num_classes,
|
424 |
+
pool_type=global_pool,
|
425 |
+
drop_rate=drop_rate
|
426 |
+
)
|
427 |
+
|
428 |
+
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
429 |
+
|
430 |
+
@torch.jit.ignore
|
431 |
+
def no_weight_decay(self):
|
432 |
+
return {''}
|
433 |
+
|
434 |
+
@torch.jit.ignore
|
435 |
+
def group_matcher(self, coarse=False):
|
436 |
+
return dict(
|
437 |
+
stem=r'^stem',
|
438 |
+
blocks=[
|
439 |
+
(r'^layers\.(\d+)', None),
|
440 |
+
(r'^norm', (99999,))
|
441 |
+
] if coarse else [
|
442 |
+
(r'^layers\.(\d+).downsample', (0,)),
|
443 |
+
(r'^layers\.(\d+)\.\w+\.(\d+)', None),
|
444 |
+
(r'^norm', (99999,)),
|
445 |
+
]
|
446 |
+
)
|
447 |
+
|
448 |
+
@torch.jit.ignore
|
449 |
+
def set_grad_checkpointing(self, enable=True):
|
450 |
+
self.grad_checkpointing = enable
|
451 |
+
for l in self.layers:
|
452 |
+
l.set_grad_checkpointing(enable=enable)
|
453 |
+
|
454 |
+
@torch.jit.ignore
|
455 |
+
def get_classifier(self) -> nn.Module:
|
456 |
+
return self.head.fc
|
457 |
+
|
458 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
459 |
+
self.head.reset(num_classes, pool_type=global_pool)
|
460 |
+
|
461 |
+
def forward_features(self, x):
|
462 |
+
x = self.stem(x)
|
463 |
+
x = self.layers(x)
|
464 |
+
x = self.norm(x)
|
465 |
+
return x
|
466 |
+
|
467 |
+
def forward_head(self, x, pre_logits: bool = False):
|
468 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
469 |
+
|
470 |
+
def forward(self, x):
|
471 |
+
x = self.forward_features(x)
|
472 |
+
x = self.forward_head(x)
|
473 |
+
return x
|
474 |
+
|
475 |
+
|
476 |
+
def _init_weights(module, name=None, head_init_scale=1.0):
|
477 |
+
if isinstance(module, nn.Conv2d):
|
478 |
+
trunc_normal_(module.weight, std=.02)
|
479 |
+
if module.bias is not None:
|
480 |
+
nn.init.zeros_(module.bias)
|
481 |
+
elif isinstance(module, nn.Linear):
|
482 |
+
trunc_normal_(module.weight, std=.02)
|
483 |
+
if module.bias is not None:
|
484 |
+
nn.init.zeros_(module.bias)
|
485 |
+
if name and 'head.fc' in name:
|
486 |
+
module.weight.data.mul_(head_init_scale)
|
487 |
+
module.bias.data.mul_(head_init_scale)
|
488 |
+
|
489 |
+
|
490 |
+
def _cfg(url='', **kwargs):
|
491 |
+
return {
|
492 |
+
'url': url,
|
493 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
494 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
495 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
496 |
+
'first_conv': 'stem.proj', 'classifier': 'head.fc',
|
497 |
+
'license': 'mit', **kwargs
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
default_cfgs = generate_default_cfgs({
|
502 |
+
"focalnet_tiny_srf.ms_in1k": _cfg(
|
503 |
+
hf_hub_id='timm/'),
|
504 |
+
"focalnet_small_srf.ms_in1k": _cfg(
|
505 |
+
hf_hub_id='timm/'),
|
506 |
+
"focalnet_base_srf.ms_in1k": _cfg(
|
507 |
+
hf_hub_id='timm/'),
|
508 |
+
"focalnet_tiny_lrf.ms_in1k": _cfg(
|
509 |
+
hf_hub_id='timm/'),
|
510 |
+
"focalnet_small_lrf.ms_in1k": _cfg(
|
511 |
+
hf_hub_id='timm/'),
|
512 |
+
"focalnet_base_lrf.ms_in1k": _cfg(
|
513 |
+
hf_hub_id='timm/'),
|
514 |
+
|
515 |
+
"focalnet_large_fl3.ms_in22k": _cfg(
|
516 |
+
hf_hub_id='timm/',
|
517 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842),
|
518 |
+
"focalnet_large_fl4.ms_in22k": _cfg(
|
519 |
+
hf_hub_id='timm/',
|
520 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842),
|
521 |
+
"focalnet_xlarge_fl3.ms_in22k": _cfg(
|
522 |
+
hf_hub_id='timm/',
|
523 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842),
|
524 |
+
"focalnet_xlarge_fl4.ms_in22k": _cfg(
|
525 |
+
hf_hub_id='timm/',
|
526 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842),
|
527 |
+
"focalnet_huge_fl3.ms_in22k": _cfg(
|
528 |
+
hf_hub_id='timm/',
|
529 |
+
num_classes=21842),
|
530 |
+
"focalnet_huge_fl4.ms_in22k": _cfg(
|
531 |
+
hf_hub_id='timm/',
|
532 |
+
num_classes=0),
|
533 |
+
})
|
534 |
+
|
535 |
+
|
536 |
+
def checkpoint_filter_fn(state_dict, model: FocalNet):
|
537 |
+
state_dict = state_dict.get('model', state_dict)
|
538 |
+
if 'stem.proj.weight' in state_dict:
|
539 |
+
return state_dict
|
540 |
+
import re
|
541 |
+
out_dict = {}
|
542 |
+
dest_dict = model.state_dict()
|
543 |
+
for k, v in state_dict.items():
|
544 |
+
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k)
|
545 |
+
k = k.replace('patch_embed', 'stem')
|
546 |
+
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
|
547 |
+
if 'norm' in k and k not in dest_dict:
|
548 |
+
k = re.sub(r'norm([0-9])', r'norm\1_post', k)
|
549 |
+
k = k.replace('ln.', 'norm.')
|
550 |
+
k = k.replace('head', 'head.fc')
|
551 |
+
if k in dest_dict and dest_dict[k].numel() == v.numel() and dest_dict[k].shape != v.shape:
|
552 |
+
v = v.reshape(dest_dict[k].shape)
|
553 |
+
out_dict[k] = v
|
554 |
+
return out_dict
|
555 |
+
|
556 |
+
|
557 |
+
def _create_focalnet(variant, pretrained=False, **kwargs):
|
558 |
+
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
|
559 |
+
out_indices = kwargs.pop('out_indices', default_out_indices)
|
560 |
+
|
561 |
+
model = build_model_with_cfg(
|
562 |
+
FocalNet, variant, pretrained,
|
563 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
564 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
565 |
+
**kwargs)
|
566 |
+
return model
|
567 |
+
|
568 |
+
|
569 |
+
@register_model
|
570 |
+
def focalnet_tiny_srf(pretrained=False, **kwargs) -> FocalNet:
|
571 |
+
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
|
572 |
+
return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs)
|
573 |
+
|
574 |
+
|
575 |
+
@register_model
|
576 |
+
def focalnet_small_srf(pretrained=False, **kwargs) -> FocalNet:
|
577 |
+
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
|
578 |
+
return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs)
|
579 |
+
|
580 |
+
|
581 |
+
@register_model
|
582 |
+
def focalnet_base_srf(pretrained=False, **kwargs) -> FocalNet:
|
583 |
+
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
|
584 |
+
return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs)
|
585 |
+
|
586 |
+
|
587 |
+
@register_model
|
588 |
+
def focalnet_tiny_lrf(pretrained=False, **kwargs) -> FocalNet:
|
589 |
+
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
590 |
+
return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs)
|
591 |
+
|
592 |
+
|
593 |
+
@register_model
|
594 |
+
def focalnet_small_lrf(pretrained=False, **kwargs) -> FocalNet:
|
595 |
+
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
596 |
+
return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs)
|
597 |
+
|
598 |
+
|
599 |
+
@register_model
|
600 |
+
def focalnet_base_lrf(pretrained=False, **kwargs) -> FocalNet:
|
601 |
+
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
|
602 |
+
return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs)
|
603 |
+
|
604 |
+
|
605 |
+
# FocalNet large+ models
|
606 |
+
@register_model
|
607 |
+
def focalnet_large_fl3(pretrained=False, **kwargs) -> FocalNet:
|
608 |
+
model_kwargs = dict(
|
609 |
+
depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4,
|
610 |
+
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
611 |
+
return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs)
|
612 |
+
|
613 |
+
|
614 |
+
@register_model
|
615 |
+
def focalnet_large_fl4(pretrained=False, **kwargs) -> FocalNet:
|
616 |
+
model_kwargs = dict(
|
617 |
+
depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4],
|
618 |
+
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
619 |
+
return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs)
|
620 |
+
|
621 |
+
|
622 |
+
@register_model
|
623 |
+
def focalnet_xlarge_fl3(pretrained=False, **kwargs) -> FocalNet:
|
624 |
+
model_kwargs = dict(
|
625 |
+
depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4,
|
626 |
+
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
627 |
+
return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs)
|
628 |
+
|
629 |
+
|
630 |
+
@register_model
|
631 |
+
def focalnet_xlarge_fl4(pretrained=False, **kwargs) -> FocalNet:
|
632 |
+
model_kwargs = dict(
|
633 |
+
depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4],
|
634 |
+
use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
635 |
+
return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs)
|
636 |
+
|
637 |
+
|
638 |
+
@register_model
|
639 |
+
def focalnet_huge_fl3(pretrained=False, **kwargs) -> FocalNet:
|
640 |
+
model_kwargs = dict(
|
641 |
+
depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], focal_windows=[3] * 4,
|
642 |
+
use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
643 |
+
return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs)
|
644 |
+
|
645 |
+
|
646 |
+
@register_model
|
647 |
+
def focalnet_huge_fl4(pretrained=False, **kwargs) -> FocalNet:
|
648 |
+
model_kwargs = dict(
|
649 |
+
depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4],
|
650 |
+
use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs)
|
651 |
+
return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs)
|
652 |
+
|
pytorch-image-models/timm/models/fx_features.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._features_fx import *
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning)
|
pytorch-image-models/timm/models/gcvit.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Global Context ViT
|
2 |
+
|
3 |
+
From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py
|
4 |
+
|
5 |
+
Global Context Vision Transformers -https://arxiv.org/abs/2206.09959
|
6 |
+
|
7 |
+
@article{hatamizadeh2022global,
|
8 |
+
title={Global Context Vision Transformers},
|
9 |
+
author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo},
|
10 |
+
journal={arXiv preprint arXiv:2206.09959},
|
11 |
+
year={2022}
|
12 |
+
}
|
13 |
+
|
14 |
+
Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit.
|
15 |
+
The license for this code release is Apache 2.0 with no commercial restrictions.
|
16 |
+
|
17 |
+
However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license
|
18 |
+
(https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones...
|
19 |
+
|
20 |
+
Hacked together by / Copyright 2022, Ross Wightman
|
21 |
+
"""
|
22 |
+
import math
|
23 |
+
from functools import partial
|
24 |
+
from typing import Callable, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
import torch.utils.checkpoint as checkpoint
|
29 |
+
|
30 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
31 |
+
from timm.layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d, \
|
32 |
+
get_attn, get_act_layer, get_norm_layer, RelPosBias, _assert
|
33 |
+
from ._builder import build_model_with_cfg
|
34 |
+
from ._features_fx import register_notrace_function
|
35 |
+
from ._manipulate import named_apply
|
36 |
+
from ._registry import register_model, generate_default_cfgs
|
37 |
+
|
38 |
+
__all__ = ['GlobalContextVit']
|
39 |
+
|
40 |
+
|
41 |
+
class MbConvBlock(nn.Module):
|
42 |
+
""" A depthwise separable / fused mbconv style residual block with SE, `no norm.
|
43 |
+
"""
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
in_chs,
|
47 |
+
out_chs=None,
|
48 |
+
expand_ratio=1.0,
|
49 |
+
attn_layer='se',
|
50 |
+
bias=False,
|
51 |
+
act_layer=nn.GELU,
|
52 |
+
):
|
53 |
+
super().__init__()
|
54 |
+
attn_kwargs = dict(act_layer=act_layer)
|
55 |
+
if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca':
|
56 |
+
attn_kwargs['rd_ratio'] = 0.25
|
57 |
+
attn_kwargs['bias'] = False
|
58 |
+
attn_layer = get_attn(attn_layer)
|
59 |
+
out_chs = out_chs or in_chs
|
60 |
+
mid_chs = int(expand_ratio * in_chs)
|
61 |
+
|
62 |
+
self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias)
|
63 |
+
self.act = act_layer()
|
64 |
+
self.se = attn_layer(mid_chs, **attn_kwargs)
|
65 |
+
self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
shortcut = x
|
69 |
+
x = self.conv_dw(x)
|
70 |
+
x = self.act(x)
|
71 |
+
x = self.se(x)
|
72 |
+
x = self.conv_pw(x)
|
73 |
+
x = x + shortcut
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Downsample2d(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
dim,
|
81 |
+
dim_out=None,
|
82 |
+
reduction='conv',
|
83 |
+
act_layer=nn.GELU,
|
84 |
+
norm_layer=LayerNorm2d, # NOTE in NCHW
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
dim_out = dim_out or dim
|
88 |
+
|
89 |
+
self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity()
|
90 |
+
self.conv_block = MbConvBlock(dim, act_layer=act_layer)
|
91 |
+
assert reduction in ('conv', 'max', 'avg')
|
92 |
+
if reduction == 'conv':
|
93 |
+
self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False)
|
94 |
+
elif reduction == 'max':
|
95 |
+
assert dim == dim_out
|
96 |
+
self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
97 |
+
else:
|
98 |
+
assert dim == dim_out
|
99 |
+
self.reduction = nn.AvgPool2d(kernel_size=2)
|
100 |
+
self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity()
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
x = self.norm1(x)
|
104 |
+
x = self.conv_block(x)
|
105 |
+
x = self.reduction(x)
|
106 |
+
x = self.norm2(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class FeatureBlock(nn.Module):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
dim,
|
114 |
+
levels=0,
|
115 |
+
reduction='max',
|
116 |
+
act_layer=nn.GELU,
|
117 |
+
):
|
118 |
+
super().__init__()
|
119 |
+
reductions = levels
|
120 |
+
levels = max(1, levels)
|
121 |
+
if reduction == 'avg':
|
122 |
+
pool_fn = partial(nn.AvgPool2d, kernel_size=2)
|
123 |
+
else:
|
124 |
+
pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1)
|
125 |
+
self.blocks = nn.Sequential()
|
126 |
+
for i in range(levels):
|
127 |
+
self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer))
|
128 |
+
if reductions:
|
129 |
+
self.blocks.add_module(f'pool{i+1}', pool_fn())
|
130 |
+
reductions -= 1
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
return self.blocks(x)
|
134 |
+
|
135 |
+
|
136 |
+
class Stem(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
in_chs: int = 3,
|
140 |
+
out_chs: int = 96,
|
141 |
+
act_layer: Callable = nn.GELU,
|
142 |
+
norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW
|
143 |
+
):
|
144 |
+
super().__init__()
|
145 |
+
self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1)
|
146 |
+
self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
x = self.conv1(x)
|
150 |
+
x = self.down(x)
|
151 |
+
return x
|
152 |
+
|
153 |
+
|
154 |
+
class WindowAttentionGlobal(nn.Module):
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
dim: int,
|
159 |
+
num_heads: int,
|
160 |
+
window_size: Tuple[int, int],
|
161 |
+
use_global: bool = True,
|
162 |
+
qkv_bias: bool = True,
|
163 |
+
attn_drop: float = 0.,
|
164 |
+
proj_drop: float = 0.,
|
165 |
+
):
|
166 |
+
super().__init__()
|
167 |
+
window_size = to_2tuple(window_size)
|
168 |
+
self.window_size = window_size
|
169 |
+
self.num_heads = num_heads
|
170 |
+
self.head_dim = dim // num_heads
|
171 |
+
self.scale = self.head_dim ** -0.5
|
172 |
+
self.use_global = use_global
|
173 |
+
|
174 |
+
self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads)
|
175 |
+
if self.use_global:
|
176 |
+
self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
177 |
+
else:
|
178 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
179 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
180 |
+
self.proj = nn.Linear(dim, dim)
|
181 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
182 |
+
|
183 |
+
def forward(self, x, q_global: Optional[torch.Tensor] = None):
|
184 |
+
B, N, C = x.shape
|
185 |
+
if self.use_global and q_global is not None:
|
186 |
+
_assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal')
|
187 |
+
|
188 |
+
kv = self.qkv(x)
|
189 |
+
kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
190 |
+
k, v = kv.unbind(0)
|
191 |
+
|
192 |
+
q = q_global.repeat(B // q_global.shape[0], 1, 1, 1)
|
193 |
+
q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
194 |
+
else:
|
195 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
196 |
+
q, k, v = qkv.unbind(0)
|
197 |
+
q = q * self.scale
|
198 |
+
|
199 |
+
attn = q @ k.transpose(-2, -1).contiguous() # NOTE contiguous() fixes an odd jit bug in PyTorch 2.0
|
200 |
+
attn = self.rel_pos(attn)
|
201 |
+
attn = attn.softmax(dim=-1)
|
202 |
+
attn = self.attn_drop(attn)
|
203 |
+
|
204 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
205 |
+
x = self.proj(x)
|
206 |
+
x = self.proj_drop(x)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
def window_partition(x, window_size: Tuple[int, int]):
|
211 |
+
B, H, W, C = x.shape
|
212 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
213 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
214 |
+
return windows
|
215 |
+
|
216 |
+
|
217 |
+
@register_notrace_function # reason: int argument is a Proxy
|
218 |
+
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
|
219 |
+
H, W = img_size
|
220 |
+
C = windows.shape[-1]
|
221 |
+
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
|
222 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
|
223 |
+
return x
|
224 |
+
|
225 |
+
|
226 |
+
class LayerScale(nn.Module):
|
227 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
228 |
+
super().__init__()
|
229 |
+
self.inplace = inplace
|
230 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
234 |
+
|
235 |
+
|
236 |
+
class GlobalContextVitBlock(nn.Module):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
dim: int,
|
240 |
+
feat_size: Tuple[int, int],
|
241 |
+
num_heads: int,
|
242 |
+
window_size: int = 7,
|
243 |
+
mlp_ratio: float = 4.,
|
244 |
+
use_global: bool = True,
|
245 |
+
qkv_bias: bool = True,
|
246 |
+
layer_scale: Optional[float] = None,
|
247 |
+
proj_drop: float = 0.,
|
248 |
+
attn_drop: float = 0.,
|
249 |
+
drop_path: float = 0.,
|
250 |
+
attn_layer: Callable = WindowAttentionGlobal,
|
251 |
+
act_layer: Callable = nn.GELU,
|
252 |
+
norm_layer: Callable = nn.LayerNorm,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
feat_size = to_2tuple(feat_size)
|
256 |
+
window_size = to_2tuple(window_size)
|
257 |
+
self.window_size = window_size
|
258 |
+
self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1]))
|
259 |
+
|
260 |
+
self.norm1 = norm_layer(dim)
|
261 |
+
self.attn = attn_layer(
|
262 |
+
dim,
|
263 |
+
num_heads=num_heads,
|
264 |
+
window_size=window_size,
|
265 |
+
use_global=use_global,
|
266 |
+
qkv_bias=qkv_bias,
|
267 |
+
attn_drop=attn_drop,
|
268 |
+
proj_drop=proj_drop,
|
269 |
+
)
|
270 |
+
self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity()
|
271 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
272 |
+
|
273 |
+
self.norm2 = norm_layer(dim)
|
274 |
+
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop)
|
275 |
+
self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity()
|
276 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
277 |
+
|
278 |
+
def _window_attn(self, x, q_global: Optional[torch.Tensor] = None):
|
279 |
+
B, H, W, C = x.shape
|
280 |
+
x_win = window_partition(x, self.window_size)
|
281 |
+
x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C)
|
282 |
+
attn_win = self.attn(x_win, q_global)
|
283 |
+
x = window_reverse(attn_win, self.window_size, (H, W))
|
284 |
+
return x
|
285 |
+
|
286 |
+
def forward(self, x, q_global: Optional[torch.Tensor] = None):
|
287 |
+
x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global)))
|
288 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
289 |
+
return x
|
290 |
+
|
291 |
+
|
292 |
+
class GlobalContextVitStage(nn.Module):
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
dim,
|
296 |
+
depth: int,
|
297 |
+
num_heads: int,
|
298 |
+
feat_size: Tuple[int, int],
|
299 |
+
window_size: Tuple[int, int],
|
300 |
+
downsample: bool = True,
|
301 |
+
global_norm: bool = False,
|
302 |
+
stage_norm: bool = False,
|
303 |
+
mlp_ratio: float = 4.,
|
304 |
+
qkv_bias: bool = True,
|
305 |
+
layer_scale: Optional[float] = None,
|
306 |
+
proj_drop: float = 0.,
|
307 |
+
attn_drop: float = 0.,
|
308 |
+
drop_path: Union[List[float], float] = 0.0,
|
309 |
+
act_layer: Callable = nn.GELU,
|
310 |
+
norm_layer: Callable = nn.LayerNorm,
|
311 |
+
norm_layer_cl: Callable = LayerNorm2d,
|
312 |
+
):
|
313 |
+
super().__init__()
|
314 |
+
if downsample:
|
315 |
+
self.downsample = Downsample2d(
|
316 |
+
dim=dim,
|
317 |
+
dim_out=dim * 2,
|
318 |
+
norm_layer=norm_layer,
|
319 |
+
)
|
320 |
+
dim = dim * 2
|
321 |
+
feat_size = (feat_size[0] // 2, feat_size[1] // 2)
|
322 |
+
else:
|
323 |
+
self.downsample = nn.Identity()
|
324 |
+
self.feat_size = feat_size
|
325 |
+
window_size = to_2tuple(window_size)
|
326 |
+
|
327 |
+
feat_levels = int(math.log2(min(feat_size) / min(window_size)))
|
328 |
+
self.global_block = FeatureBlock(dim, feat_levels)
|
329 |
+
self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity()
|
330 |
+
|
331 |
+
self.blocks = nn.ModuleList([
|
332 |
+
GlobalContextVitBlock(
|
333 |
+
dim=dim,
|
334 |
+
num_heads=num_heads,
|
335 |
+
feat_size=feat_size,
|
336 |
+
window_size=window_size,
|
337 |
+
mlp_ratio=mlp_ratio,
|
338 |
+
qkv_bias=qkv_bias,
|
339 |
+
use_global=(i % 2 != 0),
|
340 |
+
layer_scale=layer_scale,
|
341 |
+
proj_drop=proj_drop,
|
342 |
+
attn_drop=attn_drop,
|
343 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
344 |
+
act_layer=act_layer,
|
345 |
+
norm_layer=norm_layer_cl,
|
346 |
+
)
|
347 |
+
for i in range(depth)
|
348 |
+
])
|
349 |
+
self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity()
|
350 |
+
self.dim = dim
|
351 |
+
self.feat_size = feat_size
|
352 |
+
self.grad_checkpointing = False
|
353 |
+
|
354 |
+
def forward(self, x):
|
355 |
+
# input NCHW, downsample & global block are 2d conv + pooling
|
356 |
+
x = self.downsample(x)
|
357 |
+
global_query = self.global_block(x)
|
358 |
+
|
359 |
+
# reshape NCHW --> NHWC for transformer blocks
|
360 |
+
x = x.permute(0, 2, 3, 1)
|
361 |
+
global_query = self.global_norm(global_query.permute(0, 2, 3, 1))
|
362 |
+
for blk in self.blocks:
|
363 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
364 |
+
x = checkpoint.checkpoint(blk, x)
|
365 |
+
else:
|
366 |
+
x = blk(x, global_query)
|
367 |
+
x = self.norm(x)
|
368 |
+
x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW
|
369 |
+
return x
|
370 |
+
|
371 |
+
|
372 |
+
class GlobalContextVit(nn.Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
in_chans: int = 3,
|
376 |
+
num_classes: int = 1000,
|
377 |
+
global_pool: str = 'avg',
|
378 |
+
img_size: Tuple[int, int] = 224,
|
379 |
+
window_ratio: Tuple[int, ...] = (32, 32, 16, 32),
|
380 |
+
window_size: Tuple[int, ...] = None,
|
381 |
+
embed_dim: int = 64,
|
382 |
+
depths: Tuple[int, ...] = (3, 4, 19, 5),
|
383 |
+
num_heads: Tuple[int, ...] = (2, 4, 8, 16),
|
384 |
+
mlp_ratio: float = 3.0,
|
385 |
+
qkv_bias: bool = True,
|
386 |
+
layer_scale: Optional[float] = None,
|
387 |
+
drop_rate: float = 0.,
|
388 |
+
proj_drop_rate: float = 0.,
|
389 |
+
attn_drop_rate: float = 0.,
|
390 |
+
drop_path_rate: float = 0.,
|
391 |
+
weight_init='',
|
392 |
+
act_layer: str = 'gelu',
|
393 |
+
norm_layer: str = 'layernorm2d',
|
394 |
+
norm_layer_cl: str = 'layernorm',
|
395 |
+
norm_eps: float = 1e-5,
|
396 |
+
):
|
397 |
+
super().__init__()
|
398 |
+
act_layer = get_act_layer(act_layer)
|
399 |
+
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
|
400 |
+
norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps)
|
401 |
+
|
402 |
+
img_size = to_2tuple(img_size)
|
403 |
+
feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4
|
404 |
+
self.global_pool = global_pool
|
405 |
+
self.num_classes = num_classes
|
406 |
+
self.drop_rate = drop_rate
|
407 |
+
num_stages = len(depths)
|
408 |
+
self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (num_stages - 1))
|
409 |
+
if window_size is not None:
|
410 |
+
window_size = to_ntuple(num_stages)(window_size)
|
411 |
+
else:
|
412 |
+
assert window_ratio is not None
|
413 |
+
window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)])
|
414 |
+
|
415 |
+
self.stem = Stem(
|
416 |
+
in_chs=in_chans,
|
417 |
+
out_chs=embed_dim,
|
418 |
+
act_layer=act_layer,
|
419 |
+
norm_layer=norm_layer
|
420 |
+
)
|
421 |
+
|
422 |
+
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
423 |
+
stages = []
|
424 |
+
for i in range(num_stages):
|
425 |
+
last_stage = i == num_stages - 1
|
426 |
+
stage_scale = 2 ** max(i - 1, 0)
|
427 |
+
stages.append(GlobalContextVitStage(
|
428 |
+
dim=embed_dim * stage_scale,
|
429 |
+
depth=depths[i],
|
430 |
+
num_heads=num_heads[i],
|
431 |
+
feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale),
|
432 |
+
window_size=window_size[i],
|
433 |
+
downsample=i != 0,
|
434 |
+
stage_norm=last_stage,
|
435 |
+
mlp_ratio=mlp_ratio,
|
436 |
+
qkv_bias=qkv_bias,
|
437 |
+
layer_scale=layer_scale,
|
438 |
+
proj_drop=proj_drop_rate,
|
439 |
+
attn_drop=attn_drop_rate,
|
440 |
+
drop_path=dpr[i],
|
441 |
+
act_layer=act_layer,
|
442 |
+
norm_layer=norm_layer,
|
443 |
+
norm_layer_cl=norm_layer_cl,
|
444 |
+
))
|
445 |
+
self.stages = nn.Sequential(*stages)
|
446 |
+
|
447 |
+
# Classifier head
|
448 |
+
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
449 |
+
|
450 |
+
if weight_init:
|
451 |
+
named_apply(partial(self._init_weights, scheme=weight_init), self)
|
452 |
+
|
453 |
+
def _init_weights(self, module, name, scheme='vit'):
|
454 |
+
# note Conv2d left as default init
|
455 |
+
if scheme == 'vit':
|
456 |
+
if isinstance(module, nn.Linear):
|
457 |
+
nn.init.xavier_uniform_(module.weight)
|
458 |
+
if module.bias is not None:
|
459 |
+
if 'mlp' in name:
|
460 |
+
nn.init.normal_(module.bias, std=1e-6)
|
461 |
+
else:
|
462 |
+
nn.init.zeros_(module.bias)
|
463 |
+
else:
|
464 |
+
if isinstance(module, nn.Linear):
|
465 |
+
nn.init.normal_(module.weight, std=.02)
|
466 |
+
if module.bias is not None:
|
467 |
+
nn.init.zeros_(module.bias)
|
468 |
+
|
469 |
+
@torch.jit.ignore
|
470 |
+
def no_weight_decay(self):
|
471 |
+
return {
|
472 |
+
k for k, _ in self.named_parameters()
|
473 |
+
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])}
|
474 |
+
|
475 |
+
@torch.jit.ignore
|
476 |
+
def group_matcher(self, coarse=False):
|
477 |
+
matcher = dict(
|
478 |
+
stem=r'^stem', # stem and embed
|
479 |
+
blocks=r'^stages\.(\d+)'
|
480 |
+
)
|
481 |
+
return matcher
|
482 |
+
|
483 |
+
@torch.jit.ignore
|
484 |
+
def set_grad_checkpointing(self, enable=True):
|
485 |
+
for s in self.stages:
|
486 |
+
s.grad_checkpointing = enable
|
487 |
+
|
488 |
+
@torch.jit.ignore
|
489 |
+
def get_classifier(self) -> nn.Module:
|
490 |
+
return self.head.fc
|
491 |
+
|
492 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
493 |
+
self.num_classes = num_classes
|
494 |
+
if global_pool is None:
|
495 |
+
global_pool = self.head.global_pool.pool_type
|
496 |
+
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
497 |
+
|
498 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
499 |
+
x = self.stem(x)
|
500 |
+
x = self.stages(x)
|
501 |
+
return x
|
502 |
+
|
503 |
+
def forward_head(self, x, pre_logits: bool = False):
|
504 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
505 |
+
|
506 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
507 |
+
x = self.forward_features(x)
|
508 |
+
x = self.forward_head(x)
|
509 |
+
return x
|
510 |
+
|
511 |
+
|
512 |
+
def _create_gcvit(variant, pretrained=False, **kwargs):
|
513 |
+
if kwargs.get('features_only', None):
|
514 |
+
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
515 |
+
model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs)
|
516 |
+
return model
|
517 |
+
|
518 |
+
|
519 |
+
def _cfg(url='', **kwargs):
|
520 |
+
return {
|
521 |
+
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
522 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
523 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
524 |
+
'first_conv': 'stem.conv1', 'classifier': 'head.fc',
|
525 |
+
'fixed_input_size': True,
|
526 |
+
**kwargs
|
527 |
+
}
|
528 |
+
|
529 |
+
|
530 |
+
default_cfgs = generate_default_cfgs({
|
531 |
+
'gcvit_xxtiny.in1k': _cfg(
|
532 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'),
|
533 |
+
'gcvit_xtiny.in1k': _cfg(
|
534 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'),
|
535 |
+
'gcvit_tiny.in1k': _cfg(
|
536 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'),
|
537 |
+
'gcvit_small.in1k': _cfg(
|
538 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'),
|
539 |
+
'gcvit_base.in1k': _cfg(
|
540 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'),
|
541 |
+
})
|
542 |
+
|
543 |
+
|
544 |
+
@register_model
|
545 |
+
def gcvit_xxtiny(pretrained=False, **kwargs) -> GlobalContextVit:
|
546 |
+
model_kwargs = dict(
|
547 |
+
depths=(2, 2, 6, 2),
|
548 |
+
num_heads=(2, 4, 8, 16),
|
549 |
+
**kwargs)
|
550 |
+
return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs)
|
551 |
+
|
552 |
+
|
553 |
+
@register_model
|
554 |
+
def gcvit_xtiny(pretrained=False, **kwargs) -> GlobalContextVit:
|
555 |
+
model_kwargs = dict(
|
556 |
+
depths=(3, 4, 6, 5),
|
557 |
+
num_heads=(2, 4, 8, 16),
|
558 |
+
**kwargs)
|
559 |
+
return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs)
|
560 |
+
|
561 |
+
|
562 |
+
@register_model
|
563 |
+
def gcvit_tiny(pretrained=False, **kwargs) -> GlobalContextVit:
|
564 |
+
model_kwargs = dict(
|
565 |
+
depths=(3, 4, 19, 5),
|
566 |
+
num_heads=(2, 4, 8, 16),
|
567 |
+
**kwargs)
|
568 |
+
return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs)
|
569 |
+
|
570 |
+
|
571 |
+
@register_model
|
572 |
+
def gcvit_small(pretrained=False, **kwargs) -> GlobalContextVit:
|
573 |
+
model_kwargs = dict(
|
574 |
+
depths=(3, 4, 19, 5),
|
575 |
+
num_heads=(3, 6, 12, 24),
|
576 |
+
embed_dim=96,
|
577 |
+
mlp_ratio=2,
|
578 |
+
layer_scale=1e-5,
|
579 |
+
**kwargs)
|
580 |
+
return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs)
|
581 |
+
|
582 |
+
|
583 |
+
@register_model
|
584 |
+
def gcvit_base(pretrained=False, **kwargs) -> GlobalContextVit:
|
585 |
+
model_kwargs = dict(
|
586 |
+
depths=(3, 4, 19, 5),
|
587 |
+
num_heads=(4, 8, 16, 32),
|
588 |
+
embed_dim=128,
|
589 |
+
mlp_ratio=2,
|
590 |
+
layer_scale=1e-5,
|
591 |
+
**kwargs)
|
592 |
+
return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs)
|
pytorch-image-models/timm/models/ghostnet.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
An implementation of GhostNet & GhostNetV2 Models as defined in:
|
3 |
+
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
|
4 |
+
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf
|
5 |
+
|
6 |
+
The train script & code of models at:
|
7 |
+
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
|
8 |
+
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py
|
9 |
+
"""
|
10 |
+
import math
|
11 |
+
from functools import partial
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
19 |
+
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible
|
20 |
+
from ._builder import build_model_with_cfg
|
21 |
+
from ._efficientnet_blocks import SqueezeExcite, ConvBnAct
|
22 |
+
from ._manipulate import checkpoint_seq
|
23 |
+
from ._registry import register_model, generate_default_cfgs
|
24 |
+
|
25 |
+
__all__ = ['GhostNet']
|
26 |
+
|
27 |
+
|
28 |
+
_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4))
|
29 |
+
|
30 |
+
|
31 |
+
class GhostModule(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_chs,
|
35 |
+
out_chs,
|
36 |
+
kernel_size=1,
|
37 |
+
ratio=2,
|
38 |
+
dw_size=3,
|
39 |
+
stride=1,
|
40 |
+
use_act=True,
|
41 |
+
act_layer=nn.ReLU,
|
42 |
+
):
|
43 |
+
super(GhostModule, self).__init__()
|
44 |
+
self.out_chs = out_chs
|
45 |
+
init_chs = math.ceil(out_chs / ratio)
|
46 |
+
new_chs = init_chs * (ratio - 1)
|
47 |
+
|
48 |
+
self.primary_conv = nn.Sequential(
|
49 |
+
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
50 |
+
nn.BatchNorm2d(init_chs),
|
51 |
+
act_layer(inplace=True) if use_act else nn.Identity(),
|
52 |
+
)
|
53 |
+
|
54 |
+
self.cheap_operation = nn.Sequential(
|
55 |
+
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False),
|
56 |
+
nn.BatchNorm2d(new_chs),
|
57 |
+
act_layer(inplace=True) if use_act else nn.Identity(),
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x1 = self.primary_conv(x)
|
62 |
+
x2 = self.cheap_operation(x1)
|
63 |
+
out = torch.cat([x1, x2], dim=1)
|
64 |
+
return out[:, :self.out_chs, :, :]
|
65 |
+
|
66 |
+
|
67 |
+
class GhostModuleV2(nn.Module):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
in_chs,
|
71 |
+
out_chs,
|
72 |
+
kernel_size=1,
|
73 |
+
ratio=2,
|
74 |
+
dw_size=3,
|
75 |
+
stride=1,
|
76 |
+
use_act=True,
|
77 |
+
act_layer=nn.ReLU,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
self.gate_fn = nn.Sigmoid()
|
81 |
+
self.out_chs = out_chs
|
82 |
+
init_chs = math.ceil(out_chs / ratio)
|
83 |
+
new_chs = init_chs * (ratio - 1)
|
84 |
+
self.primary_conv = nn.Sequential(
|
85 |
+
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
86 |
+
nn.BatchNorm2d(init_chs),
|
87 |
+
act_layer(inplace=True) if use_act else nn.Identity(),
|
88 |
+
)
|
89 |
+
self.cheap_operation = nn.Sequential(
|
90 |
+
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False),
|
91 |
+
nn.BatchNorm2d(new_chs),
|
92 |
+
act_layer(inplace=True) if use_act else nn.Identity(),
|
93 |
+
)
|
94 |
+
self.short_conv = nn.Sequential(
|
95 |
+
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
96 |
+
nn.BatchNorm2d(out_chs),
|
97 |
+
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False),
|
98 |
+
nn.BatchNorm2d(out_chs),
|
99 |
+
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False),
|
100 |
+
nn.BatchNorm2d(out_chs),
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
|
105 |
+
x1 = self.primary_conv(x)
|
106 |
+
x2 = self.cheap_operation(x1)
|
107 |
+
out = torch.cat([x1, x2], dim=1)
|
108 |
+
return out[:, :self.out_chs, :, :] * F.interpolate(
|
109 |
+
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest')
|
110 |
+
|
111 |
+
|
112 |
+
class GhostBottleneck(nn.Module):
|
113 |
+
""" Ghost bottleneck w/ optional SE"""
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
in_chs,
|
118 |
+
mid_chs,
|
119 |
+
out_chs,
|
120 |
+
dw_kernel_size=3,
|
121 |
+
stride=1,
|
122 |
+
act_layer=nn.ReLU,
|
123 |
+
se_ratio=0.,
|
124 |
+
mode='original',
|
125 |
+
):
|
126 |
+
super(GhostBottleneck, self).__init__()
|
127 |
+
has_se = se_ratio is not None and se_ratio > 0.
|
128 |
+
self.stride = stride
|
129 |
+
|
130 |
+
# Point-wise expansion
|
131 |
+
if mode == 'original':
|
132 |
+
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
133 |
+
else:
|
134 |
+
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
135 |
+
|
136 |
+
# Depth-wise convolution
|
137 |
+
if self.stride > 1:
|
138 |
+
self.conv_dw = nn.Conv2d(
|
139 |
+
mid_chs, mid_chs, dw_kernel_size, stride=stride,
|
140 |
+
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False)
|
141 |
+
self.bn_dw = nn.BatchNorm2d(mid_chs)
|
142 |
+
else:
|
143 |
+
self.conv_dw = None
|
144 |
+
self.bn_dw = None
|
145 |
+
|
146 |
+
# Squeeze-and-excitation
|
147 |
+
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None
|
148 |
+
|
149 |
+
# Point-wise linear projection
|
150 |
+
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False)
|
151 |
+
|
152 |
+
# shortcut
|
153 |
+
if in_chs == out_chs and self.stride == 1:
|
154 |
+
self.shortcut = nn.Sequential()
|
155 |
+
else:
|
156 |
+
self.shortcut = nn.Sequential(
|
157 |
+
nn.Conv2d(
|
158 |
+
in_chs, in_chs, dw_kernel_size, stride=stride,
|
159 |
+
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
|
160 |
+
nn.BatchNorm2d(in_chs),
|
161 |
+
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
|
162 |
+
nn.BatchNorm2d(out_chs),
|
163 |
+
)
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
shortcut = x
|
167 |
+
|
168 |
+
# 1st ghost bottleneck
|
169 |
+
x = self.ghost1(x)
|
170 |
+
|
171 |
+
# Depth-wise convolution
|
172 |
+
if self.conv_dw is not None:
|
173 |
+
x = self.conv_dw(x)
|
174 |
+
x = self.bn_dw(x)
|
175 |
+
|
176 |
+
# Squeeze-and-excitation
|
177 |
+
if self.se is not None:
|
178 |
+
x = self.se(x)
|
179 |
+
|
180 |
+
# 2nd ghost bottleneck
|
181 |
+
x = self.ghost2(x)
|
182 |
+
|
183 |
+
x += self.shortcut(shortcut)
|
184 |
+
return x
|
185 |
+
|
186 |
+
|
187 |
+
class GhostNet(nn.Module):
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
cfgs,
|
191 |
+
num_classes=1000,
|
192 |
+
width=1.0,
|
193 |
+
in_chans=3,
|
194 |
+
output_stride=32,
|
195 |
+
global_pool='avg',
|
196 |
+
drop_rate=0.2,
|
197 |
+
version='v1',
|
198 |
+
):
|
199 |
+
super(GhostNet, self).__init__()
|
200 |
+
# setting of inverted residual blocks
|
201 |
+
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported'
|
202 |
+
self.cfgs = cfgs
|
203 |
+
self.num_classes = num_classes
|
204 |
+
self.drop_rate = drop_rate
|
205 |
+
self.grad_checkpointing = False
|
206 |
+
self.feature_info = []
|
207 |
+
|
208 |
+
# building first layer
|
209 |
+
stem_chs = make_divisible(16 * width, 4)
|
210 |
+
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False)
|
211 |
+
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem'))
|
212 |
+
self.bn1 = nn.BatchNorm2d(stem_chs)
|
213 |
+
self.act1 = nn.ReLU(inplace=True)
|
214 |
+
prev_chs = stem_chs
|
215 |
+
|
216 |
+
# building inverted residual blocks
|
217 |
+
stages = nn.ModuleList([])
|
218 |
+
stage_idx = 0
|
219 |
+
layer_idx = 0
|
220 |
+
net_stride = 2
|
221 |
+
for cfg in self.cfgs:
|
222 |
+
layers = []
|
223 |
+
s = 1
|
224 |
+
for k, exp_size, c, se_ratio, s in cfg:
|
225 |
+
out_chs = make_divisible(c * width, 4)
|
226 |
+
mid_chs = make_divisible(exp_size * width, 4)
|
227 |
+
layer_kwargs = {}
|
228 |
+
if version == 'v2' and layer_idx > 1:
|
229 |
+
layer_kwargs['mode'] = 'attn'
|
230 |
+
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs))
|
231 |
+
prev_chs = out_chs
|
232 |
+
layer_idx += 1
|
233 |
+
if s > 1:
|
234 |
+
net_stride *= 2
|
235 |
+
self.feature_info.append(dict(
|
236 |
+
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}'))
|
237 |
+
stages.append(nn.Sequential(*layers))
|
238 |
+
stage_idx += 1
|
239 |
+
|
240 |
+
out_chs = make_divisible(exp_size * width, 4)
|
241 |
+
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1)))
|
242 |
+
self.pool_dim = prev_chs = out_chs
|
243 |
+
|
244 |
+
self.blocks = nn.Sequential(*stages)
|
245 |
+
|
246 |
+
# building last several layers
|
247 |
+
self.num_features = prev_chs
|
248 |
+
self.head_hidden_size = out_chs = 1280
|
249 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
250 |
+
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True)
|
251 |
+
self.act2 = nn.ReLU(inplace=True)
|
252 |
+
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
253 |
+
self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity()
|
254 |
+
|
255 |
+
# FIXME init
|
256 |
+
|
257 |
+
@torch.jit.ignore
|
258 |
+
def group_matcher(self, coarse=False):
|
259 |
+
matcher = dict(
|
260 |
+
stem=r'^conv_stem|bn1',
|
261 |
+
blocks=[
|
262 |
+
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None),
|
263 |
+
(r'conv_head', (99999,))
|
264 |
+
]
|
265 |
+
)
|
266 |
+
return matcher
|
267 |
+
|
268 |
+
@torch.jit.ignore
|
269 |
+
def set_grad_checkpointing(self, enable=True):
|
270 |
+
self.grad_checkpointing = enable
|
271 |
+
|
272 |
+
@torch.jit.ignore
|
273 |
+
def get_classifier(self) -> nn.Module:
|
274 |
+
return self.classifier
|
275 |
+
|
276 |
+
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
277 |
+
self.num_classes = num_classes
|
278 |
+
# cannot meaningfully change pooling of efficient head after creation
|
279 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
280 |
+
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
281 |
+
self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity()
|
282 |
+
|
283 |
+
def forward_features(self, x):
|
284 |
+
x = self.conv_stem(x)
|
285 |
+
x = self.bn1(x)
|
286 |
+
x = self.act1(x)
|
287 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
288 |
+
x = checkpoint_seq(self.blocks, x, flatten=True)
|
289 |
+
else:
|
290 |
+
x = self.blocks(x)
|
291 |
+
return x
|
292 |
+
|
293 |
+
def forward_head(self, x, pre_logits: bool = False):
|
294 |
+
x = self.global_pool(x)
|
295 |
+
x = self.conv_head(x)
|
296 |
+
x = self.act2(x)
|
297 |
+
x = self.flatten(x)
|
298 |
+
if self.drop_rate > 0.:
|
299 |
+
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
300 |
+
return x if pre_logits else self.classifier(x)
|
301 |
+
|
302 |
+
def forward(self, x):
|
303 |
+
x = self.forward_features(x)
|
304 |
+
x = self.forward_head(x)
|
305 |
+
return x
|
306 |
+
|
307 |
+
|
308 |
+
def checkpoint_filter_fn(state_dict, model: nn.Module):
|
309 |
+
out_dict = {}
|
310 |
+
for k, v in state_dict.items():
|
311 |
+
if 'total' in k:
|
312 |
+
continue
|
313 |
+
out_dict[k] = v
|
314 |
+
return out_dict
|
315 |
+
|
316 |
+
|
317 |
+
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
318 |
+
"""
|
319 |
+
Constructs a GhostNet model
|
320 |
+
"""
|
321 |
+
cfgs = [
|
322 |
+
# k, t, c, SE, s
|
323 |
+
# stage1
|
324 |
+
[[3, 16, 16, 0, 1]],
|
325 |
+
# stage2
|
326 |
+
[[3, 48, 24, 0, 2]],
|
327 |
+
[[3, 72, 24, 0, 1]],
|
328 |
+
# stage3
|
329 |
+
[[5, 72, 40, 0.25, 2]],
|
330 |
+
[[5, 120, 40, 0.25, 1]],
|
331 |
+
# stage4
|
332 |
+
[[3, 240, 80, 0, 2]],
|
333 |
+
[[3, 200, 80, 0, 1],
|
334 |
+
[3, 184, 80, 0, 1],
|
335 |
+
[3, 184, 80, 0, 1],
|
336 |
+
[3, 480, 112, 0.25, 1],
|
337 |
+
[3, 672, 112, 0.25, 1]
|
338 |
+
],
|
339 |
+
# stage5
|
340 |
+
[[5, 672, 160, 0.25, 2]],
|
341 |
+
[[5, 960, 160, 0, 1],
|
342 |
+
[5, 960, 160, 0.25, 1],
|
343 |
+
[5, 960, 160, 0, 1],
|
344 |
+
[5, 960, 160, 0.25, 1]
|
345 |
+
]
|
346 |
+
]
|
347 |
+
model_kwargs = dict(
|
348 |
+
cfgs=cfgs,
|
349 |
+
width=width,
|
350 |
+
**kwargs,
|
351 |
+
)
|
352 |
+
return build_model_with_cfg(
|
353 |
+
GhostNet,
|
354 |
+
variant,
|
355 |
+
pretrained,
|
356 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
357 |
+
feature_cfg=dict(flatten_sequential=True),
|
358 |
+
**model_kwargs,
|
359 |
+
)
|
360 |
+
|
361 |
+
|
362 |
+
def _cfg(url='', **kwargs):
|
363 |
+
return {
|
364 |
+
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
365 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
366 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
367 |
+
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
368 |
+
**kwargs
|
369 |
+
}
|
370 |
+
|
371 |
+
|
372 |
+
default_cfgs = generate_default_cfgs({
|
373 |
+
'ghostnet_050.untrained': _cfg(),
|
374 |
+
'ghostnet_100.in1k': _cfg(
|
375 |
+
hf_hub_id='timm/',
|
376 |
+
# url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'
|
377 |
+
),
|
378 |
+
'ghostnet_130.untrained': _cfg(),
|
379 |
+
'ghostnetv2_100.in1k': _cfg(
|
380 |
+
hf_hub_id='timm/',
|
381 |
+
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'
|
382 |
+
),
|
383 |
+
'ghostnetv2_130.in1k': _cfg(
|
384 |
+
hf_hub_id='timm/',
|
385 |
+
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'
|
386 |
+
),
|
387 |
+
'ghostnetv2_160.in1k': _cfg(
|
388 |
+
hf_hub_id='timm/',
|
389 |
+
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'
|
390 |
+
),
|
391 |
+
})
|
392 |
+
|
393 |
+
|
394 |
+
@register_model
|
395 |
+
def ghostnet_050(pretrained=False, **kwargs) -> GhostNet:
|
396 |
+
""" GhostNet-0.5x """
|
397 |
+
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs)
|
398 |
+
return model
|
399 |
+
|
400 |
+
|
401 |
+
@register_model
|
402 |
+
def ghostnet_100(pretrained=False, **kwargs) -> GhostNet:
|
403 |
+
""" GhostNet-1.0x """
|
404 |
+
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs)
|
405 |
+
return model
|
406 |
+
|
407 |
+
|
408 |
+
@register_model
|
409 |
+
def ghostnet_130(pretrained=False, **kwargs) -> GhostNet:
|
410 |
+
""" GhostNet-1.3x """
|
411 |
+
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
|
412 |
+
return model
|
413 |
+
|
414 |
+
|
415 |
+
@register_model
|
416 |
+
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet:
|
417 |
+
""" GhostNetV2-1.0x """
|
418 |
+
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs)
|
419 |
+
return model
|
420 |
+
|
421 |
+
|
422 |
+
@register_model
|
423 |
+
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet:
|
424 |
+
""" GhostNetV2-1.3x """
|
425 |
+
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs)
|
426 |
+
return model
|
427 |
+
|
428 |
+
|
429 |
+
@register_model
|
430 |
+
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet:
|
431 |
+
""" GhostNetV2-1.6x """
|
432 |
+
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs)
|
433 |
+
return model
|
pytorch-image-models/timm/models/hardcorenas.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
6 |
+
from ._builder import build_model_with_cfg
|
7 |
+
from ._builder import pretrained_cfg_for_features
|
8 |
+
from ._efficientnet_blocks import SqueezeExcite
|
9 |
+
from ._efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels
|
10 |
+
from ._registry import register_model, generate_default_cfgs
|
11 |
+
from .mobilenetv3 import MobileNetV3, MobileNetV3Features
|
12 |
+
|
13 |
+
__all__ = [] # model_registry will add each entrypoint fn to this
|
14 |
+
|
15 |
+
|
16 |
+
def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs):
|
17 |
+
"""Creates a hardcorenas model
|
18 |
+
|
19 |
+
Ref impl: https://github.com/Alibaba-MIIL/HardCoReNAS
|
20 |
+
Paper: https://arxiv.org/abs/2102.11646
|
21 |
+
|
22 |
+
"""
|
23 |
+
num_features = 1280
|
24 |
+
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels)
|
25 |
+
model_kwargs = dict(
|
26 |
+
block_args=decode_arch_def(arch_def),
|
27 |
+
num_features=num_features,
|
28 |
+
stem_size=32,
|
29 |
+
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
|
30 |
+
act_layer=resolve_act_layer(kwargs, 'hard_swish'),
|
31 |
+
se_layer=se_layer,
|
32 |
+
**kwargs,
|
33 |
+
)
|
34 |
+
|
35 |
+
features_only = False
|
36 |
+
model_cls = MobileNetV3
|
37 |
+
kwargs_filter = None
|
38 |
+
if model_kwargs.pop('features_only', False):
|
39 |
+
features_only = True
|
40 |
+
kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool')
|
41 |
+
model_cls = MobileNetV3Features
|
42 |
+
model = build_model_with_cfg(
|
43 |
+
model_cls,
|
44 |
+
variant,
|
45 |
+
pretrained,
|
46 |
+
pretrained_strict=not features_only,
|
47 |
+
kwargs_filter=kwargs_filter,
|
48 |
+
**model_kwargs,
|
49 |
+
)
|
50 |
+
if features_only:
|
51 |
+
model.default_cfg = pretrained_cfg_for_features(model.default_cfg)
|
52 |
+
return model
|
53 |
+
|
54 |
+
|
55 |
+
def _cfg(url='', **kwargs):
|
56 |
+
return {
|
57 |
+
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
58 |
+
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
59 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
60 |
+
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
61 |
+
**kwargs
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
default_cfgs = generate_default_cfgs({
|
66 |
+
'hardcorenas_a.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
67 |
+
'hardcorenas_b.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
68 |
+
'hardcorenas_c.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
69 |
+
'hardcorenas_d.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
70 |
+
'hardcorenas_e.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
71 |
+
'hardcorenas_f.miil_green_in1k': _cfg(hf_hub_id='timm/'),
|
72 |
+
})
|
73 |
+
|
74 |
+
|
75 |
+
@register_model
|
76 |
+
def hardcorenas_a(pretrained=False, **kwargs) -> MobileNetV3:
|
77 |
+
""" hardcorenas_A """
|
78 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
|
79 |
+
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
|
80 |
+
['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'],
|
81 |
+
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'],
|
82 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
|
83 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs)
|
84 |
+
return model
|
85 |
+
|
86 |
+
|
87 |
+
@register_model
|
88 |
+
def hardcorenas_b(pretrained=False, **kwargs) -> MobileNetV3:
|
89 |
+
""" hardcorenas_B """
|
90 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'],
|
91 |
+
['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'],
|
92 |
+
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'],
|
93 |
+
['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
|
94 |
+
['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
|
95 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
|
96 |
+
['cn_r1_k1_s1_c960']]
|
97 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs)
|
98 |
+
return model
|
99 |
+
|
100 |
+
|
101 |
+
@register_model
|
102 |
+
def hardcorenas_c(pretrained=False, **kwargs) -> MobileNetV3:
|
103 |
+
""" hardcorenas_C """
|
104 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
|
105 |
+
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre',
|
106 |
+
'ir_r1_k5_s1_e3_c40_nre'],
|
107 |
+
['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
|
108 |
+
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
|
109 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
|
110 |
+
['cn_r1_k1_s1_c960']]
|
111 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs)
|
112 |
+
return model
|
113 |
+
|
114 |
+
|
115 |
+
@register_model
|
116 |
+
def hardcorenas_d(pretrained=False, **kwargs) -> MobileNetV3:
|
117 |
+
""" hardcorenas_D """
|
118 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
|
119 |
+
['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'],
|
120 |
+
['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
|
121 |
+
'ir_r1_k3_s1_e3_c80_se0.25'],
|
122 |
+
['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25',
|
123 |
+
'ir_r1_k5_s1_e3_c112_se0.25'],
|
124 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
|
125 |
+
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
|
126 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs)
|
127 |
+
return model
|
128 |
+
|
129 |
+
|
130 |
+
@register_model
|
131 |
+
def hardcorenas_e(pretrained=False, **kwargs) -> MobileNetV3:
|
132 |
+
""" hardcorenas_E """
|
133 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
|
134 |
+
['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25',
|
135 |
+
'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'],
|
136 |
+
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
|
137 |
+
'ir_r1_k5_s1_e3_c112_se0.25'],
|
138 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
|
139 |
+
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
|
140 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs)
|
141 |
+
return model
|
142 |
+
|
143 |
+
|
144 |
+
@register_model
|
145 |
+
def hardcorenas_f(pretrained=False, **kwargs) -> MobileNetV3:
|
146 |
+
""" hardcorenas_F """
|
147 |
+
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
|
148 |
+
['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
|
149 |
+
['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
|
150 |
+
'ir_r1_k3_s1_e3_c80_se0.25'],
|
151 |
+
['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
|
152 |
+
'ir_r1_k3_s1_e3_c112_se0.25'],
|
153 |
+
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25',
|
154 |
+
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
|
155 |
+
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs)
|
156 |
+
return model
|
pytorch-image-models/timm/models/helpers.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._builder import *
|
2 |
+
from ._helpers import *
|
3 |
+
from ._manipulate import *
|
4 |
+
from ._prune import *
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning)
|
pytorch-image-models/timm/models/hgnet.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PP-HGNet (V1 & V2)
|
2 |
+
|
3 |
+
Reference:
|
4 |
+
https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md
|
5 |
+
The Paddle Implement of PP-HGNet (https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/docs/en/models/PP-HGNet_en.md)
|
6 |
+
PP-HGNet: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet.py
|
7 |
+
PP-HGNetv2: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py
|
8 |
+
"""
|
9 |
+
from typing import Dict, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
16 |
+
from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d
|
17 |
+
from ._builder import build_model_with_cfg
|
18 |
+
from ._registry import register_model, generate_default_cfgs
|
19 |
+
from ._manipulate import checkpoint_seq
|
20 |
+
|
21 |
+
__all__ = ['HighPerfGpuNet']
|
22 |
+
|
23 |
+
|
24 |
+
class LearnableAffineBlock(nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
scale_value=1.0,
|
28 |
+
bias_value=0.0
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True)
|
32 |
+
self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return self.scale * x + self.bias
|
36 |
+
|
37 |
+
|
38 |
+
class ConvBNAct(nn.Module):
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
in_chs,
|
42 |
+
out_chs,
|
43 |
+
kernel_size,
|
44 |
+
stride=1,
|
45 |
+
groups=1,
|
46 |
+
padding='',
|
47 |
+
use_act=True,
|
48 |
+
use_lab=False
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.use_act = use_act
|
52 |
+
self.use_lab = use_lab
|
53 |
+
self.conv = create_conv2d(
|
54 |
+
in_chs,
|
55 |
+
out_chs,
|
56 |
+
kernel_size,
|
57 |
+
stride=stride,
|
58 |
+
padding=padding,
|
59 |
+
groups=groups,
|
60 |
+
)
|
61 |
+
self.bn = nn.BatchNorm2d(out_chs)
|
62 |
+
if self.use_act:
|
63 |
+
self.act = nn.ReLU()
|
64 |
+
else:
|
65 |
+
self.act = nn.Identity()
|
66 |
+
if self.use_act and self.use_lab:
|
67 |
+
self.lab = LearnableAffineBlock()
|
68 |
+
else:
|
69 |
+
self.lab = nn.Identity()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv(x)
|
73 |
+
x = self.bn(x)
|
74 |
+
x = self.act(x)
|
75 |
+
x = self.lab(x)
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
class LightConvBNAct(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
in_chs,
|
83 |
+
out_chs,
|
84 |
+
kernel_size,
|
85 |
+
groups=1,
|
86 |
+
use_lab=False
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
self.conv1 = ConvBNAct(
|
90 |
+
in_chs,
|
91 |
+
out_chs,
|
92 |
+
kernel_size=1,
|
93 |
+
use_act=False,
|
94 |
+
use_lab=use_lab,
|
95 |
+
)
|
96 |
+
self.conv2 = ConvBNAct(
|
97 |
+
out_chs,
|
98 |
+
out_chs,
|
99 |
+
kernel_size=kernel_size,
|
100 |
+
groups=out_chs,
|
101 |
+
use_act=True,
|
102 |
+
use_lab=use_lab,
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.conv1(x)
|
107 |
+
x = self.conv2(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
class EseModule(nn.Module):
|
112 |
+
def __init__(self, chs):
|
113 |
+
super().__init__()
|
114 |
+
self.conv = nn.Conv2d(
|
115 |
+
chs,
|
116 |
+
chs,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0,
|
120 |
+
)
|
121 |
+
self.sigmoid = nn.Sigmoid()
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
identity = x
|
125 |
+
x = x.mean((2, 3), keepdim=True)
|
126 |
+
x = self.conv(x)
|
127 |
+
x = self.sigmoid(x)
|
128 |
+
return torch.mul(identity, x)
|
129 |
+
|
130 |
+
|
131 |
+
class StemV1(nn.Module):
|
132 |
+
# for PP-HGNet
|
133 |
+
def __init__(self, stem_chs):
|
134 |
+
super().__init__()
|
135 |
+
self.stem = nn.Sequential(*[
|
136 |
+
ConvBNAct(
|
137 |
+
stem_chs[i],
|
138 |
+
stem_chs[i + 1],
|
139 |
+
kernel_size=3,
|
140 |
+
stride=2 if i == 0 else 1) for i in range(
|
141 |
+
len(stem_chs) - 1)
|
142 |
+
])
|
143 |
+
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
x = self.stem(x)
|
147 |
+
x = self.pool(x)
|
148 |
+
return x
|
149 |
+
|
150 |
+
|
151 |
+
class StemV2(nn.Module):
|
152 |
+
# for PP-HGNetv2
|
153 |
+
def __init__(self, in_chs, mid_chs, out_chs, use_lab=False):
|
154 |
+
super().__init__()
|
155 |
+
self.stem1 = ConvBNAct(
|
156 |
+
in_chs,
|
157 |
+
mid_chs,
|
158 |
+
kernel_size=3,
|
159 |
+
stride=2,
|
160 |
+
use_lab=use_lab,
|
161 |
+
)
|
162 |
+
self.stem2a = ConvBNAct(
|
163 |
+
mid_chs,
|
164 |
+
mid_chs // 2,
|
165 |
+
kernel_size=2,
|
166 |
+
stride=1,
|
167 |
+
use_lab=use_lab,
|
168 |
+
)
|
169 |
+
self.stem2b = ConvBNAct(
|
170 |
+
mid_chs // 2,
|
171 |
+
mid_chs,
|
172 |
+
kernel_size=2,
|
173 |
+
stride=1,
|
174 |
+
use_lab=use_lab,
|
175 |
+
)
|
176 |
+
self.stem3 = ConvBNAct(
|
177 |
+
mid_chs * 2,
|
178 |
+
mid_chs,
|
179 |
+
kernel_size=3,
|
180 |
+
stride=2,
|
181 |
+
use_lab=use_lab,
|
182 |
+
)
|
183 |
+
self.stem4 = ConvBNAct(
|
184 |
+
mid_chs,
|
185 |
+
out_chs,
|
186 |
+
kernel_size=1,
|
187 |
+
stride=1,
|
188 |
+
use_lab=use_lab,
|
189 |
+
)
|
190 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True)
|
191 |
+
|
192 |
+
def forward(self, x):
|
193 |
+
x = self.stem1(x)
|
194 |
+
x = F.pad(x, (0, 1, 0, 1))
|
195 |
+
x2 = self.stem2a(x)
|
196 |
+
x2 = F.pad(x2, (0, 1, 0, 1))
|
197 |
+
x2 = self.stem2b(x2)
|
198 |
+
x1 = self.pool(x)
|
199 |
+
x = torch.cat([x1, x2], dim=1)
|
200 |
+
x = self.stem3(x)
|
201 |
+
x = self.stem4(x)
|
202 |
+
return x
|
203 |
+
|
204 |
+
|
205 |
+
class HighPerfGpuBlock(nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
in_chs,
|
209 |
+
mid_chs,
|
210 |
+
out_chs,
|
211 |
+
layer_num,
|
212 |
+
kernel_size=3,
|
213 |
+
residual=False,
|
214 |
+
light_block=False,
|
215 |
+
use_lab=False,
|
216 |
+
agg='ese',
|
217 |
+
drop_path=0.,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
self.residual = residual
|
221 |
+
|
222 |
+
self.layers = nn.ModuleList()
|
223 |
+
for i in range(layer_num):
|
224 |
+
if light_block:
|
225 |
+
self.layers.append(
|
226 |
+
LightConvBNAct(
|
227 |
+
in_chs if i == 0 else mid_chs,
|
228 |
+
mid_chs,
|
229 |
+
kernel_size=kernel_size,
|
230 |
+
use_lab=use_lab,
|
231 |
+
)
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
self.layers.append(
|
235 |
+
ConvBNAct(
|
236 |
+
in_chs if i == 0 else mid_chs,
|
237 |
+
mid_chs,
|
238 |
+
kernel_size=kernel_size,
|
239 |
+
stride=1,
|
240 |
+
use_lab=use_lab,
|
241 |
+
)
|
242 |
+
)
|
243 |
+
|
244 |
+
# feature aggregation
|
245 |
+
total_chs = in_chs + layer_num * mid_chs
|
246 |
+
if agg == 'se':
|
247 |
+
aggregation_squeeze_conv = ConvBNAct(
|
248 |
+
total_chs,
|
249 |
+
out_chs // 2,
|
250 |
+
kernel_size=1,
|
251 |
+
stride=1,
|
252 |
+
use_lab=use_lab,
|
253 |
+
)
|
254 |
+
aggregation_excitation_conv = ConvBNAct(
|
255 |
+
out_chs // 2,
|
256 |
+
out_chs,
|
257 |
+
kernel_size=1,
|
258 |
+
stride=1,
|
259 |
+
use_lab=use_lab,
|
260 |
+
)
|
261 |
+
self.aggregation = nn.Sequential(
|
262 |
+
aggregation_squeeze_conv,
|
263 |
+
aggregation_excitation_conv,
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
aggregation_conv = ConvBNAct(
|
267 |
+
total_chs,
|
268 |
+
out_chs,
|
269 |
+
kernel_size=1,
|
270 |
+
stride=1,
|
271 |
+
use_lab=use_lab,
|
272 |
+
)
|
273 |
+
att = EseModule(out_chs)
|
274 |
+
self.aggregation = nn.Sequential(
|
275 |
+
aggregation_conv,
|
276 |
+
att,
|
277 |
+
)
|
278 |
+
|
279 |
+
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
|
280 |
+
|
281 |
+
def forward(self, x):
|
282 |
+
identity = x
|
283 |
+
output = [x]
|
284 |
+
for layer in self.layers:
|
285 |
+
x = layer(x)
|
286 |
+
output.append(x)
|
287 |
+
x = torch.cat(output, dim=1)
|
288 |
+
x = self.aggregation(x)
|
289 |
+
if self.residual:
|
290 |
+
x = self.drop_path(x) + identity
|
291 |
+
return x
|
292 |
+
|
293 |
+
|
294 |
+
class HighPerfGpuStage(nn.Module):
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
in_chs,
|
298 |
+
mid_chs,
|
299 |
+
out_chs,
|
300 |
+
block_num,
|
301 |
+
layer_num,
|
302 |
+
downsample=True,
|
303 |
+
stride=2,
|
304 |
+
light_block=False,
|
305 |
+
kernel_size=3,
|
306 |
+
use_lab=False,
|
307 |
+
agg='ese',
|
308 |
+
drop_path=0.,
|
309 |
+
):
|
310 |
+
super().__init__()
|
311 |
+
self.downsample = downsample
|
312 |
+
if downsample:
|
313 |
+
self.downsample = ConvBNAct(
|
314 |
+
in_chs,
|
315 |
+
in_chs,
|
316 |
+
kernel_size=3,
|
317 |
+
stride=stride,
|
318 |
+
groups=in_chs,
|
319 |
+
use_act=False,
|
320 |
+
use_lab=use_lab,
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
self.downsample = nn.Identity()
|
324 |
+
|
325 |
+
blocks_list = []
|
326 |
+
for i in range(block_num):
|
327 |
+
blocks_list.append(
|
328 |
+
HighPerfGpuBlock(
|
329 |
+
in_chs if i == 0 else out_chs,
|
330 |
+
mid_chs,
|
331 |
+
out_chs,
|
332 |
+
layer_num,
|
333 |
+
residual=False if i == 0 else True,
|
334 |
+
kernel_size=kernel_size,
|
335 |
+
light_block=light_block,
|
336 |
+
use_lab=use_lab,
|
337 |
+
agg=agg,
|
338 |
+
drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path,
|
339 |
+
)
|
340 |
+
)
|
341 |
+
self.blocks = nn.Sequential(*blocks_list)
|
342 |
+
self.grad_checkpointing= False
|
343 |
+
|
344 |
+
def forward(self, x):
|
345 |
+
x = self.downsample(x)
|
346 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
347 |
+
x = checkpoint_seq(self.blocks, x, flatten=False)
|
348 |
+
else:
|
349 |
+
x = self.blocks(x)
|
350 |
+
return x
|
351 |
+
|
352 |
+
|
353 |
+
class ClassifierHead(nn.Module):
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
in_features: int,
|
357 |
+
num_classes: int,
|
358 |
+
pool_type: str = 'avg',
|
359 |
+
drop_rate: float = 0.,
|
360 |
+
hidden_size: Optional[int] = 2048,
|
361 |
+
use_lab: bool = False
|
362 |
+
):
|
363 |
+
super(ClassifierHead, self).__init__()
|
364 |
+
self.num_features = in_features
|
365 |
+
if pool_type is not None:
|
366 |
+
if not pool_type:
|
367 |
+
assert num_classes == 0, 'Classifier head must be removed if pooling is disabled'
|
368 |
+
|
369 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
|
370 |
+
if hidden_size is not None:
|
371 |
+
self.num_features = hidden_size
|
372 |
+
last_conv = nn.Conv2d(
|
373 |
+
in_features,
|
374 |
+
hidden_size,
|
375 |
+
kernel_size=1,
|
376 |
+
stride=1,
|
377 |
+
padding=0,
|
378 |
+
bias=False,
|
379 |
+
)
|
380 |
+
act = nn.ReLU()
|
381 |
+
if use_lab:
|
382 |
+
lab = LearnableAffineBlock()
|
383 |
+
self.last_conv = nn.Sequential(last_conv, act, lab)
|
384 |
+
else:
|
385 |
+
self.last_conv = nn.Sequential(last_conv, act)
|
386 |
+
else:
|
387 |
+
self.last_conv = nn.Identity()
|
388 |
+
|
389 |
+
self.dropout = nn.Dropout(drop_rate)
|
390 |
+
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled
|
391 |
+
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
392 |
+
|
393 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None):
|
394 |
+
if pool_type is not None:
|
395 |
+
if not pool_type:
|
396 |
+
assert num_classes == 0, 'Classifier head must be removed if pooling is disabled'
|
397 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
|
398 |
+
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled
|
399 |
+
|
400 |
+
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
401 |
+
|
402 |
+
def forward(self, x, pre_logits: bool = False):
|
403 |
+
x = self.global_pool(x)
|
404 |
+
x = self.last_conv(x)
|
405 |
+
x = self.dropout(x)
|
406 |
+
x = self.flatten(x)
|
407 |
+
if pre_logits:
|
408 |
+
return x
|
409 |
+
x = self.fc(x)
|
410 |
+
return x
|
411 |
+
|
412 |
+
|
413 |
+
class HighPerfGpuNet(nn.Module):
|
414 |
+
|
415 |
+
def __init__(
|
416 |
+
self,
|
417 |
+
cfg: Dict,
|
418 |
+
in_chans: int = 3,
|
419 |
+
num_classes: int = 1000,
|
420 |
+
global_pool: str = 'avg',
|
421 |
+
head_hidden_size: Optional[int] = 2048,
|
422 |
+
drop_rate: float = 0.,
|
423 |
+
drop_path_rate: float = 0.,
|
424 |
+
use_lab: bool = False,
|
425 |
+
**kwargs,
|
426 |
+
):
|
427 |
+
super(HighPerfGpuNet, self).__init__()
|
428 |
+
stem_type = cfg["stem_type"]
|
429 |
+
stem_chs = cfg["stem_chs"]
|
430 |
+
stages_cfg = [cfg["stage1"], cfg["stage2"], cfg["stage3"], cfg["stage4"]]
|
431 |
+
self.num_classes = num_classes
|
432 |
+
self.drop_rate = drop_rate
|
433 |
+
self.use_lab = use_lab
|
434 |
+
|
435 |
+
assert stem_type in ['v1', 'v2']
|
436 |
+
if stem_type == 'v2':
|
437 |
+
self.stem = StemV2(
|
438 |
+
in_chs=in_chans,
|
439 |
+
mid_chs=stem_chs[0],
|
440 |
+
out_chs=stem_chs[1],
|
441 |
+
use_lab=use_lab)
|
442 |
+
else:
|
443 |
+
self.stem = StemV1([in_chans] + stem_chs)
|
444 |
+
|
445 |
+
current_stride = 4
|
446 |
+
|
447 |
+
stages = []
|
448 |
+
self.feature_info = []
|
449 |
+
block_depths = [c[3] for c in stages_cfg]
|
450 |
+
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)]
|
451 |
+
for i, stage_config in enumerate(stages_cfg):
|
452 |
+
in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num = stage_config
|
453 |
+
stages += [HighPerfGpuStage(
|
454 |
+
in_chs=in_chs,
|
455 |
+
mid_chs=mid_chs,
|
456 |
+
out_chs=out_chs,
|
457 |
+
block_num=block_num,
|
458 |
+
layer_num=layer_num,
|
459 |
+
downsample=downsample,
|
460 |
+
light_block=light_block,
|
461 |
+
kernel_size=kernel_size,
|
462 |
+
use_lab=use_lab,
|
463 |
+
agg='ese' if stem_type == 'v1' else 'se',
|
464 |
+
drop_path=dpr[i],
|
465 |
+
)]
|
466 |
+
self.num_features = out_chs
|
467 |
+
if downsample:
|
468 |
+
current_stride *= 2
|
469 |
+
self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')]
|
470 |
+
self.stages = nn.Sequential(*stages)
|
471 |
+
|
472 |
+
self.head = ClassifierHead(
|
473 |
+
self.num_features,
|
474 |
+
num_classes=num_classes,
|
475 |
+
pool_type=global_pool,
|
476 |
+
drop_rate=drop_rate,
|
477 |
+
hidden_size=head_hidden_size,
|
478 |
+
use_lab=use_lab
|
479 |
+
)
|
480 |
+
self.head_hidden_size = self.head.num_features
|
481 |
+
|
482 |
+
for n, m in self.named_modules():
|
483 |
+
if isinstance(m, nn.Conv2d):
|
484 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
485 |
+
elif isinstance(m, nn.BatchNorm2d):
|
486 |
+
nn.init.ones_(m.weight)
|
487 |
+
nn.init.zeros_(m.bias)
|
488 |
+
elif isinstance(m, nn.Linear):
|
489 |
+
nn.init.zeros_(m.bias)
|
490 |
+
|
491 |
+
@torch.jit.ignore
|
492 |
+
def group_matcher(self, coarse=False):
|
493 |
+
return dict(
|
494 |
+
stem=r'^stem',
|
495 |
+
blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)',
|
496 |
+
)
|
497 |
+
|
498 |
+
@torch.jit.ignore
|
499 |
+
def set_grad_checkpointing(self, enable=True):
|
500 |
+
for s in self.stages:
|
501 |
+
s.grad_checkpointing = enable
|
502 |
+
|
503 |
+
@torch.jit.ignore
|
504 |
+
def get_classifier(self) -> nn.Module:
|
505 |
+
return self.head.fc
|
506 |
+
|
507 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
508 |
+
self.num_classes = num_classes
|
509 |
+
self.head.reset(num_classes, global_pool)
|
510 |
+
|
511 |
+
def forward_features(self, x):
|
512 |
+
x = self.stem(x)
|
513 |
+
return self.stages(x)
|
514 |
+
|
515 |
+
def forward_head(self, x, pre_logits: bool = False):
|
516 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
x = self.forward_features(x)
|
520 |
+
x = self.forward_head(x)
|
521 |
+
return x
|
522 |
+
|
523 |
+
|
524 |
+
model_cfgs = dict(
|
525 |
+
# PP-HGNet
|
526 |
+
hgnet_tiny={
|
527 |
+
"stem_type": 'v1',
|
528 |
+
"stem_chs": [48, 48, 96],
|
529 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
530 |
+
"stage1": [96, 96, 224, 1, False, False, 3, 5],
|
531 |
+
"stage2": [224, 128, 448, 1, True, False, 3, 5],
|
532 |
+
"stage3": [448, 160, 512, 2, True, False, 3, 5],
|
533 |
+
"stage4": [512, 192, 768, 1, True, False, 3, 5],
|
534 |
+
},
|
535 |
+
hgnet_small={
|
536 |
+
"stem_type": 'v1',
|
537 |
+
"stem_chs": [64, 64, 128],
|
538 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
539 |
+
"stage1": [128, 128, 256, 1, False, False, 3, 6],
|
540 |
+
"stage2": [256, 160, 512, 1, True, False, 3, 6],
|
541 |
+
"stage3": [512, 192, 768, 2, True, False, 3, 6],
|
542 |
+
"stage4": [768, 224, 1024, 1, True, False, 3, 6],
|
543 |
+
},
|
544 |
+
hgnet_base={
|
545 |
+
"stem_type": 'v1',
|
546 |
+
"stem_chs": [96, 96, 160],
|
547 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
548 |
+
"stage1": [160, 192, 320, 1, False, False, 3, 7],
|
549 |
+
"stage2": [320, 224, 640, 2, True, False, 3, 7],
|
550 |
+
"stage3": [640, 256, 960, 3, True, False, 3, 7],
|
551 |
+
"stage4": [960, 288, 1280, 2, True, False, 3, 7],
|
552 |
+
},
|
553 |
+
# PP-HGNetv2
|
554 |
+
hgnetv2_b0={
|
555 |
+
"stem_type": 'v2',
|
556 |
+
"stem_chs": [16, 16],
|
557 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
558 |
+
"stage1": [16, 16, 64, 1, False, False, 3, 3],
|
559 |
+
"stage2": [64, 32, 256, 1, True, False, 3, 3],
|
560 |
+
"stage3": [256, 64, 512, 2, True, True, 5, 3],
|
561 |
+
"stage4": [512, 128, 1024, 1, True, True, 5, 3],
|
562 |
+
},
|
563 |
+
hgnetv2_b1={
|
564 |
+
"stem_type": 'v2',
|
565 |
+
"stem_chs": [24, 32],
|
566 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
567 |
+
"stage1": [32, 32, 64, 1, False, False, 3, 3],
|
568 |
+
"stage2": [64, 48, 256, 1, True, False, 3, 3],
|
569 |
+
"stage3": [256, 96, 512, 2, True, True, 5, 3],
|
570 |
+
"stage4": [512, 192, 1024, 1, True, True, 5, 3],
|
571 |
+
},
|
572 |
+
hgnetv2_b2={
|
573 |
+
"stem_type": 'v2',
|
574 |
+
"stem_chs": [24, 32],
|
575 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
576 |
+
"stage1": [32, 32, 96, 1, False, False, 3, 4],
|
577 |
+
"stage2": [96, 64, 384, 1, True, False, 3, 4],
|
578 |
+
"stage3": [384, 128, 768, 3, True, True, 5, 4],
|
579 |
+
"stage4": [768, 256, 1536, 1, True, True, 5, 4],
|
580 |
+
},
|
581 |
+
hgnetv2_b3={
|
582 |
+
"stem_type": 'v2',
|
583 |
+
"stem_chs": [24, 32],
|
584 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
585 |
+
"stage1": [32, 32, 128, 1, False, False, 3, 5],
|
586 |
+
"stage2": [128, 64, 512, 1, True, False, 3, 5],
|
587 |
+
"stage3": [512, 128, 1024, 3, True, True, 5, 5],
|
588 |
+
"stage4": [1024, 256, 2048, 1, True, True, 5, 5],
|
589 |
+
},
|
590 |
+
hgnetv2_b4={
|
591 |
+
"stem_type": 'v2',
|
592 |
+
"stem_chs": [32, 48],
|
593 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
594 |
+
"stage1": [48, 48, 128, 1, False, False, 3, 6],
|
595 |
+
"stage2": [128, 96, 512, 1, True, False, 3, 6],
|
596 |
+
"stage3": [512, 192, 1024, 3, True, True, 5, 6],
|
597 |
+
"stage4": [1024, 384, 2048, 1, True, True, 5, 6],
|
598 |
+
},
|
599 |
+
hgnetv2_b5={
|
600 |
+
"stem_type": 'v2',
|
601 |
+
"stem_chs": [32, 64],
|
602 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
603 |
+
"stage1": [64, 64, 128, 1, False, False, 3, 6],
|
604 |
+
"stage2": [128, 128, 512, 2, True, False, 3, 6],
|
605 |
+
"stage3": [512, 256, 1024, 5, True, True, 5, 6],
|
606 |
+
"stage4": [1024, 512, 2048, 2, True, True, 5, 6],
|
607 |
+
},
|
608 |
+
hgnetv2_b6={
|
609 |
+
"stem_type": 'v2',
|
610 |
+
"stem_chs": [48, 96],
|
611 |
+
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
|
612 |
+
"stage1": [96, 96, 192, 2, False, False, 3, 6],
|
613 |
+
"stage2": [192, 192, 512, 3, True, False, 3, 6],
|
614 |
+
"stage3": [512, 384, 1024, 6, True, True, 5, 6],
|
615 |
+
"stage4": [1024, 768, 2048, 3, True, True, 5, 6],
|
616 |
+
},
|
617 |
+
)
|
618 |
+
|
619 |
+
|
620 |
+
def _create_hgnet(variant, pretrained=False, **kwargs):
|
621 |
+
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
|
622 |
+
return build_model_with_cfg(
|
623 |
+
HighPerfGpuNet,
|
624 |
+
variant,
|
625 |
+
pretrained,
|
626 |
+
model_cfg=model_cfgs[variant],
|
627 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
628 |
+
**kwargs,
|
629 |
+
)
|
630 |
+
|
631 |
+
|
632 |
+
def _cfg(url='', **kwargs):
|
633 |
+
return {
|
634 |
+
'url': url,
|
635 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
636 |
+
'crop_pct': 0.965, 'interpolation': 'bicubic',
|
637 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
638 |
+
'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv',
|
639 |
+
'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288),
|
640 |
+
**kwargs,
|
641 |
+
}
|
642 |
+
|
643 |
+
|
644 |
+
default_cfgs = generate_default_cfgs({
|
645 |
+
'hgnet_tiny.paddle_in1k': _cfg(
|
646 |
+
first_conv='stem.stem.0.conv',
|
647 |
+
hf_hub_id='timm/'),
|
648 |
+
'hgnet_tiny.ssld_in1k': _cfg(
|
649 |
+
first_conv='stem.stem.0.conv',
|
650 |
+
hf_hub_id='timm/'),
|
651 |
+
'hgnet_small.paddle_in1k': _cfg(
|
652 |
+
first_conv='stem.stem.0.conv',
|
653 |
+
hf_hub_id='timm/'),
|
654 |
+
'hgnet_small.ssld_in1k': _cfg(
|
655 |
+
first_conv='stem.stem.0.conv',
|
656 |
+
hf_hub_id='timm/'),
|
657 |
+
'hgnet_base.ssld_in1k': _cfg(
|
658 |
+
first_conv='stem.stem.0.conv',
|
659 |
+
hf_hub_id='timm/'),
|
660 |
+
'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg(
|
661 |
+
hf_hub_id='timm/'),
|
662 |
+
'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg(
|
663 |
+
hf_hub_id='timm/'),
|
664 |
+
'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg(
|
665 |
+
hf_hub_id='timm/'),
|
666 |
+
'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg(
|
667 |
+
hf_hub_id='timm/'),
|
668 |
+
'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg(
|
669 |
+
hf_hub_id='timm/'),
|
670 |
+
'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg(
|
671 |
+
hf_hub_id='timm/'),
|
672 |
+
'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg(
|
673 |
+
hf_hub_id='timm/'),
|
674 |
+
'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg(
|
675 |
+
hf_hub_id='timm/'),
|
676 |
+
'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg(
|
677 |
+
hf_hub_id='timm/'),
|
678 |
+
'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg(
|
679 |
+
hf_hub_id='timm/'),
|
680 |
+
'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg(
|
681 |
+
hf_hub_id='timm/'),
|
682 |
+
'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg(
|
683 |
+
hf_hub_id='timm/'),
|
684 |
+
'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg(
|
685 |
+
hf_hub_id='timm/'),
|
686 |
+
'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg(
|
687 |
+
hf_hub_id='timm/'),
|
688 |
+
})
|
689 |
+
|
690 |
+
|
691 |
+
@register_model
|
692 |
+
def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
693 |
+
return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs)
|
694 |
+
|
695 |
+
|
696 |
+
@register_model
|
697 |
+
def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
698 |
+
return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs)
|
699 |
+
|
700 |
+
|
701 |
+
@register_model
|
702 |
+
def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
703 |
+
return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs)
|
704 |
+
|
705 |
+
|
706 |
+
@register_model
|
707 |
+
def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
708 |
+
return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs)
|
709 |
+
|
710 |
+
|
711 |
+
@register_model
|
712 |
+
def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
713 |
+
return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs)
|
714 |
+
|
715 |
+
|
716 |
+
@register_model
|
717 |
+
def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
718 |
+
return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs)
|
719 |
+
|
720 |
+
|
721 |
+
@register_model
|
722 |
+
def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
723 |
+
return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs)
|
724 |
+
|
725 |
+
|
726 |
+
@register_model
|
727 |
+
def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
728 |
+
return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs)
|
729 |
+
|
730 |
+
|
731 |
+
@register_model
|
732 |
+
def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
733 |
+
return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs)
|
734 |
+
|
735 |
+
|
736 |
+
@register_model
|
737 |
+
def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet:
|
738 |
+
return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs)
|
pytorch-image-models/timm/models/hiera.py
ADDED
@@ -0,0 +1,996 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" An PyTorch implementation of Hiera
|
2 |
+
|
3 |
+
Adapted for timm from originals at https://github.com/facebookresearch/hiera
|
4 |
+
"""
|
5 |
+
|
6 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
7 |
+
# All rights reserved.
|
8 |
+
|
9 |
+
# This source code is licensed under the license found in the
|
10 |
+
# LICENSE file in the root directory of this source tree.
|
11 |
+
# --------------------------------------------------------
|
12 |
+
#
|
13 |
+
# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
|
14 |
+
#
|
15 |
+
# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan,
|
16 |
+
# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,
|
17 |
+
# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer.
|
18 |
+
#
|
19 |
+
# Paper: https://arxiv.org/abs/2306.00989/
|
20 |
+
#
|
21 |
+
# References:
|
22 |
+
# slowfast: https://github.com/facebookresearch/SlowFast
|
23 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
24 |
+
# --------------------------------------------------------
|
25 |
+
import math
|
26 |
+
from functools import partial
|
27 |
+
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
|
28 |
+
|
29 |
+
import torch
|
30 |
+
import torch.nn as nn
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from torch.utils.checkpoint import checkpoint
|
33 |
+
|
34 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
35 |
+
from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \
|
36 |
+
_assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax
|
37 |
+
|
38 |
+
from ._registry import generate_default_cfgs, register_model
|
39 |
+
from ._builder import build_model_with_cfg
|
40 |
+
from ._features import feature_take_indices
|
41 |
+
from ._features_fx import register_notrace_function
|
42 |
+
from ._manipulate import named_apply
|
43 |
+
|
44 |
+
|
45 |
+
__all__ = ['Hiera']
|
46 |
+
|
47 |
+
|
48 |
+
def conv_nd(n: int) -> Type[nn.Module]:
|
49 |
+
"""
|
50 |
+
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
|
51 |
+
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
|
52 |
+
"""
|
53 |
+
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
|
54 |
+
|
55 |
+
|
56 |
+
@register_notrace_function
|
57 |
+
def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor:
|
58 |
+
# target_size: [(T), (H), W]
|
59 |
+
# (spatial) mask: [B, C, (t), (h), w]
|
60 |
+
if mask is None:
|
61 |
+
return mask
|
62 |
+
|
63 |
+
_assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.")
|
64 |
+
if mask.shape[2:] != target_size:
|
65 |
+
return F.interpolate(mask.float(), size=target_size)
|
66 |
+
return mask
|
67 |
+
|
68 |
+
|
69 |
+
def undo_windowing(
|
70 |
+
x: torch.Tensor,
|
71 |
+
shape: List[int],
|
72 |
+
mu_shape: List[int],
|
73 |
+
) -> torch.Tensor:
|
74 |
+
"""
|
75 |
+
Restore spatial organization by undoing windowed organization of mask units.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
|
79 |
+
shape: current spatial shape, if it were not organized into mask unit
|
80 |
+
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
|
81 |
+
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
|
82 |
+
Returns:
|
83 |
+
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
|
84 |
+
"""
|
85 |
+
D = len(shape)
|
86 |
+
B, C = x.shape[0], x.shape[-1]
|
87 |
+
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
|
88 |
+
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
|
89 |
+
x = x.view(B, *num_MUs, *mu_shape, C)
|
90 |
+
|
91 |
+
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
|
92 |
+
permute = (
|
93 |
+
[0]
|
94 |
+
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], [])
|
95 |
+
+ [len(x.shape) - 1]
|
96 |
+
)
|
97 |
+
x = x.permute(permute).reshape(B, *shape, C)
|
98 |
+
|
99 |
+
return x
|
100 |
+
|
101 |
+
|
102 |
+
class Unroll(nn.Module):
|
103 |
+
"""
|
104 |
+
Reorders the tokens such that patches are contiguous in memory.
|
105 |
+
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
|
106 |
+
[B, (Sy, Sx, H // Sy, W // Sx), C]
|
107 |
+
|
108 |
+
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
|
109 |
+
Not only is this faster, but it also makes it easy to support inputs of arbitrary
|
110 |
+
dimensions in addition to patch-wise sparsity.
|
111 |
+
|
112 |
+
Performing this operation multiple times in sequence puts entire windows as contiguous
|
113 |
+
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
|
114 |
+
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
|
115 |
+
computed easily and efficiently, while also allowing max to be applied sequentially.
|
116 |
+
|
117 |
+
Note: This means that intermediate values of the model are not in HxW order, so they
|
118 |
+
need to be re-rolled if you want to use the intermediate values as a HxW feature map.
|
119 |
+
The last block of the network is fine though, since by then the strides are all consumed.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
input_size: Tuple[int, ...],
|
125 |
+
patch_stride: Tuple[int, ...],
|
126 |
+
unroll_schedule: List[Tuple[int, ...]],
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.size = [i // s for i, s in zip(input_size, patch_stride)]
|
130 |
+
self.schedule = unroll_schedule
|
131 |
+
|
132 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
133 |
+
"""
|
134 |
+
Input: Flattened patch embeddings [B, N, C]
|
135 |
+
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
|
136 |
+
"""
|
137 |
+
B, _, C = x.shape
|
138 |
+
cur_size = self.size
|
139 |
+
x = x.view(*([B] + cur_size + [C]))
|
140 |
+
|
141 |
+
for strides in self.schedule:
|
142 |
+
# Move patches with the given strides to the batch dimension
|
143 |
+
|
144 |
+
# Create a view of the tensor with the patch stride as separate dims
|
145 |
+
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
|
146 |
+
cur_size = [i // s for i, s in zip(cur_size, strides)]
|
147 |
+
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
|
148 |
+
x = x.view(new_shape)
|
149 |
+
|
150 |
+
# Move the patch stride into the batch dimension
|
151 |
+
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
|
152 |
+
L = len(new_shape)
|
153 |
+
permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
|
154 |
+
x = x.permute(permute)
|
155 |
+
|
156 |
+
# Now finally flatten the relevant dims into the batch dimension
|
157 |
+
x = x.flatten(0, len(strides))
|
158 |
+
B *= math.prod(strides)
|
159 |
+
|
160 |
+
x = x.reshape(-1, math.prod(self.size), C)
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class Reroll(nn.Module):
|
165 |
+
"""
|
166 |
+
Undos the "unroll" operation so that you can use intermediate features.
|
167 |
+
"""
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
input_size: Tuple[int, ...],
|
172 |
+
patch_stride: Tuple[int, ...],
|
173 |
+
unroll_schedule: List[Tuple[int, ...]],
|
174 |
+
stage_ends: List[int],
|
175 |
+
q_pool: int,
|
176 |
+
):
|
177 |
+
super().__init__()
|
178 |
+
self.size = [i // s for i, s in zip(input_size, patch_stride)]
|
179 |
+
|
180 |
+
# The first stage has to reverse everything
|
181 |
+
# The next stage has to reverse all but the first unroll, etc.
|
182 |
+
self.schedule = {}
|
183 |
+
size = self.size
|
184 |
+
for i in range(stage_ends[-1] + 1):
|
185 |
+
self.schedule[i] = unroll_schedule, size
|
186 |
+
# schedule unchanged if no pooling at a stage end
|
187 |
+
if i in stage_ends[:q_pool]:
|
188 |
+
if len(unroll_schedule) > 0:
|
189 |
+
size = [n // s for n, s in zip(size, unroll_schedule[0])]
|
190 |
+
unroll_schedule = unroll_schedule[1:]
|
191 |
+
|
192 |
+
def forward(
|
193 |
+
self,
|
194 |
+
x: torch.Tensor,
|
195 |
+
block_idx: int,
|
196 |
+
mask: torch.Tensor = None
|
197 |
+
) -> torch.Tensor:
|
198 |
+
"""
|
199 |
+
Roll the given tensor back up to spatial order assuming it's from the given block.
|
200 |
+
|
201 |
+
If no mask is provided:
|
202 |
+
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
|
203 |
+
If a mask is provided:
|
204 |
+
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
|
205 |
+
"""
|
206 |
+
schedule, size = self.schedule[block_idx]
|
207 |
+
B, N, C = x.shape
|
208 |
+
|
209 |
+
D = len(size)
|
210 |
+
cur_mu_shape = [1] * D
|
211 |
+
|
212 |
+
for strides in schedule:
|
213 |
+
# Extract the current patch from N
|
214 |
+
x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C)
|
215 |
+
|
216 |
+
# Move that patch into the current MU
|
217 |
+
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
|
218 |
+
L = len(x.shape)
|
219 |
+
permute = (
|
220 |
+
[0, 1 + D]
|
221 |
+
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], [])
|
222 |
+
+ [L - 1]
|
223 |
+
)
|
224 |
+
x = x.permute(permute)
|
225 |
+
|
226 |
+
# Reshape to [B, N//(Sy*Sx), *MU, C]
|
227 |
+
for i in range(D):
|
228 |
+
cur_mu_shape[i] *= strides[i]
|
229 |
+
x = x.reshape(B, -1, *cur_mu_shape, C)
|
230 |
+
N = x.shape[1]
|
231 |
+
|
232 |
+
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
|
233 |
+
x = x.view(B, N, *cur_mu_shape, C)
|
234 |
+
|
235 |
+
# If masked, return [B, #MUs, MUy, MUx, C]
|
236 |
+
if mask is not None:
|
237 |
+
return x
|
238 |
+
|
239 |
+
# If not masked, we can return [B, H, W, C]
|
240 |
+
x = undo_windowing(x, size, cur_mu_shape)
|
241 |
+
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
class MaskUnitAttention(nn.Module):
|
246 |
+
"""
|
247 |
+
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
|
248 |
+
|
249 |
+
Note: this assumes the tokens have already been flattened and unrolled into mask units.
|
250 |
+
See `Unroll` for more details.
|
251 |
+
"""
|
252 |
+
fused_attn: torch.jit.Final[bool]
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
dim: int,
|
257 |
+
dim_out: int,
|
258 |
+
heads: int,
|
259 |
+
q_stride: int = 1,
|
260 |
+
window_size: int = 0,
|
261 |
+
use_mask_unit_attn: bool = False,
|
262 |
+
):
|
263 |
+
"""
|
264 |
+
Args:
|
265 |
+
- dim, dim_out: The input and output feature dimensions.
|
266 |
+
- heads: The number of attention heads.
|
267 |
+
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
|
268 |
+
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
|
269 |
+
- use_mask_unit_attn: Use Mask Unit or Global Attention.
|
270 |
+
"""
|
271 |
+
super().__init__()
|
272 |
+
|
273 |
+
self.dim = dim
|
274 |
+
self.dim_out = dim_out
|
275 |
+
self.heads = heads
|
276 |
+
self.q_stride = q_stride
|
277 |
+
self.head_dim = dim_out // heads
|
278 |
+
self.scale = self.head_dim ** -0.5
|
279 |
+
self.fused_attn = use_fused_attn()
|
280 |
+
|
281 |
+
self.qkv = nn.Linear(dim, 3 * dim_out)
|
282 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
283 |
+
|
284 |
+
self.window_size = window_size
|
285 |
+
self.use_mask_unit_attn = use_mask_unit_attn
|
286 |
+
|
287 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
288 |
+
""" Input should be of shape [batch, tokens, channels]. """
|
289 |
+
B, N, _ = x.shape
|
290 |
+
num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
|
291 |
+
qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5)
|
292 |
+
q, k, v = qkv.unbind(0)
|
293 |
+
|
294 |
+
if self.q_stride > 1:
|
295 |
+
# Refer to Unroll to see how this performs a maxpool-Nd
|
296 |
+
q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3)
|
297 |
+
|
298 |
+
if self.fused_attn:
|
299 |
+
# Note: the original paper did *not* use SDPA, it's a free boost!
|
300 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
301 |
+
else:
|
302 |
+
attn = (q * self.scale) @ k.transpose(-1, -2)
|
303 |
+
attn = attn.softmax(dim=-1)
|
304 |
+
x = attn @ v
|
305 |
+
|
306 |
+
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
|
307 |
+
x = self.proj(x)
|
308 |
+
return x
|
309 |
+
|
310 |
+
|
311 |
+
class HieraBlock(nn.Module):
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
dim: int,
|
315 |
+
dim_out: int,
|
316 |
+
heads: int,
|
317 |
+
mlp_ratio: float = 4.0,
|
318 |
+
drop_path: float = 0.0,
|
319 |
+
init_values: Optional[float] = None,
|
320 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
321 |
+
act_layer: nn.Module = nn.GELU,
|
322 |
+
q_stride: int = 1,
|
323 |
+
window_size: int = 0,
|
324 |
+
use_expand_proj: bool = True,
|
325 |
+
use_mask_unit_attn: bool = False,
|
326 |
+
):
|
327 |
+
super().__init__()
|
328 |
+
self.dim = dim
|
329 |
+
self.dim_out = dim_out
|
330 |
+
|
331 |
+
self.norm1 = norm_layer(dim)
|
332 |
+
if dim != dim_out:
|
333 |
+
self.do_expand = True
|
334 |
+
if use_expand_proj:
|
335 |
+
self.proj = nn.Linear(dim, dim_out)
|
336 |
+
else:
|
337 |
+
assert dim_out == dim * 2
|
338 |
+
self.proj = None
|
339 |
+
else:
|
340 |
+
self.do_expand = False
|
341 |
+
self.proj = None
|
342 |
+
self.attn = MaskUnitAttention(
|
343 |
+
dim,
|
344 |
+
dim_out,
|
345 |
+
heads,
|
346 |
+
q_stride,
|
347 |
+
window_size,
|
348 |
+
use_mask_unit_attn
|
349 |
+
)
|
350 |
+
self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
|
351 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
|
352 |
+
|
353 |
+
self.norm2 = norm_layer(dim_out)
|
354 |
+
self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)
|
355 |
+
self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
|
356 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
|
357 |
+
|
358 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
359 |
+
# Attention + Q Pooling
|
360 |
+
x_norm = self.norm1(x)
|
361 |
+
if self.do_expand:
|
362 |
+
if self.proj is not None:
|
363 |
+
x = self.proj(x_norm)
|
364 |
+
x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) # max-pool
|
365 |
+
else:
|
366 |
+
x = torch.cat([
|
367 |
+
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), # max-pool
|
368 |
+
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), # avg-pool
|
369 |
+
],
|
370 |
+
dim=-1,
|
371 |
+
)
|
372 |
+
x = x + self.drop_path1(self.ls1(self.attn(x_norm)))
|
373 |
+
|
374 |
+
# MLP
|
375 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
376 |
+
return x
|
377 |
+
|
378 |
+
|
379 |
+
class PatchEmbed(nn.Module):
|
380 |
+
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""
|
381 |
+
|
382 |
+
def __init__(
|
383 |
+
self,
|
384 |
+
dim_in: int,
|
385 |
+
dim_out: int,
|
386 |
+
kernel: Tuple[int, ...],
|
387 |
+
stride: Tuple[int, ...],
|
388 |
+
padding: Tuple[int, ...],
|
389 |
+
reshape: bool = True,
|
390 |
+
):
|
391 |
+
super().__init__()
|
392 |
+
|
393 |
+
# Support any number of spatial dimensions
|
394 |
+
self.spatial_dims = len(kernel)
|
395 |
+
self.reshape = reshape
|
396 |
+
self.proj = conv_nd(self.spatial_dims)(
|
397 |
+
dim_in,
|
398 |
+
dim_out,
|
399 |
+
kernel_size=kernel,
|
400 |
+
stride=stride,
|
401 |
+
padding=padding,
|
402 |
+
)
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
x: torch.Tensor,
|
407 |
+
mask: Optional[torch.Tensor] = None,
|
408 |
+
) -> torch.Tensor:
|
409 |
+
if mask is not None:
|
410 |
+
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
|
411 |
+
x = self.proj(x * mask.to(torch.bool))
|
412 |
+
else:
|
413 |
+
x = self.proj(x)
|
414 |
+
if self.reshape:
|
415 |
+
x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1)
|
416 |
+
return x
|
417 |
+
|
418 |
+
|
419 |
+
class Hiera(nn.Module):
|
420 |
+
|
421 |
+
def __init__(
|
422 |
+
self,
|
423 |
+
img_size: Tuple[int, ...] = (224, 224),
|
424 |
+
in_chans: int = 3,
|
425 |
+
embed_dim: int = 96, # initial embed dim
|
426 |
+
num_heads: int = 1, # initial number of heads
|
427 |
+
num_classes: int = 1000,
|
428 |
+
global_pool: str = 'avg',
|
429 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3),
|
430 |
+
q_pool: int = 3, # number of q_pool stages
|
431 |
+
q_stride: Tuple[int, ...] = (2, 2),
|
432 |
+
mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1)
|
433 |
+
# mask_unit_attn: which stages use mask unit attention?
|
434 |
+
mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
|
435 |
+
use_expand_proj: bool = True,
|
436 |
+
dim_mul: float = 2.0,
|
437 |
+
head_mul: float = 2.0,
|
438 |
+
patch_kernel: Tuple[int, ...] = (7, 7),
|
439 |
+
patch_stride: Tuple[int, ...] = (4, 4),
|
440 |
+
patch_padding: Tuple[int, ...] = (3, 3),
|
441 |
+
mlp_ratio: float = 4.0,
|
442 |
+
drop_path_rate: float = 0.0,
|
443 |
+
init_values: Optional[float] = None,
|
444 |
+
fix_init: bool = True,
|
445 |
+
weight_init: str = '',
|
446 |
+
norm_layer: Union[str, nn.Module] = "LayerNorm",
|
447 |
+
drop_rate: float = 0.0,
|
448 |
+
patch_drop_rate: float = 0.0,
|
449 |
+
head_init_scale: float = 0.001,
|
450 |
+
sep_pos_embed: bool = False,
|
451 |
+
abs_win_pos_embed: bool = False,
|
452 |
+
global_pos_size: Tuple[int, int] = (14, 14),
|
453 |
+
):
|
454 |
+
super().__init__()
|
455 |
+
self.num_classes = num_classes
|
456 |
+
self.grad_checkpointing = False
|
457 |
+
norm_layer = get_norm_layer(norm_layer)
|
458 |
+
if isinstance(img_size, int):
|
459 |
+
img_size = to_2tuple(img_size)
|
460 |
+
|
461 |
+
self.patch_stride = patch_stride
|
462 |
+
self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)]
|
463 |
+
num_tokens = math.prod(self.tokens_spatial_shape)
|
464 |
+
flat_mu_size = math.prod(mask_unit_size)
|
465 |
+
flat_q_stride = math.prod(q_stride)
|
466 |
+
assert q_pool < len(stages)
|
467 |
+
self.q_pool, self.q_stride = q_pool, q_stride
|
468 |
+
self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size
|
469 |
+
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)]
|
470 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
471 |
+
self.patch_drop_rate = patch_drop_rate
|
472 |
+
|
473 |
+
self.patch_embed = PatchEmbed(
|
474 |
+
in_chans,
|
475 |
+
embed_dim,
|
476 |
+
patch_kernel,
|
477 |
+
patch_stride,
|
478 |
+
patch_padding,
|
479 |
+
)
|
480 |
+
|
481 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
482 |
+
self.pos_embed_win: Optional[nn.Parameter] = None
|
483 |
+
self.pos_embed_spatial: Optional[nn.Parameter] = None
|
484 |
+
self.pos_embed_temporal: Optional[nn.Parameter] = None
|
485 |
+
if sep_pos_embed:
|
486 |
+
self.pos_embed_spatial = nn.Parameter(
|
487 |
+
torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim)
|
488 |
+
)
|
489 |
+
self.pos_embed_temporal = nn.Parameter(
|
490 |
+
torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)
|
491 |
+
)
|
492 |
+
else:
|
493 |
+
if abs_win_pos_embed:
|
494 |
+
# absolute win, params NCHW to make tile & interpolate more natural before add & reshape
|
495 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size))
|
496 |
+
self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size))
|
497 |
+
else:
|
498 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))
|
499 |
+
|
500 |
+
# Setup roll and reroll modules
|
501 |
+
self.unroll = Unroll(
|
502 |
+
img_size,
|
503 |
+
patch_stride,
|
504 |
+
[q_stride] * len(self.stage_ends[:-1])
|
505 |
+
)
|
506 |
+
self.reroll = Reroll(
|
507 |
+
img_size,
|
508 |
+
patch_stride,
|
509 |
+
[q_stride] * len(self.stage_ends[:-1]),
|
510 |
+
self.stage_ends,
|
511 |
+
q_pool,
|
512 |
+
)
|
513 |
+
# q_pool locations
|
514 |
+
q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]]
|
515 |
+
|
516 |
+
# Transformer blocks
|
517 |
+
cur_stage = 0
|
518 |
+
depth = sum(stages)
|
519 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
520 |
+
self.blocks = nn.ModuleList()
|
521 |
+
self.feature_info = []
|
522 |
+
for i in range(depth):
|
523 |
+
dim_out = embed_dim
|
524 |
+
# Mask unit or global attention.
|
525 |
+
# Lag by 1 block, so that global attention,
|
526 |
+
# applied post pooling on lower resolution
|
527 |
+
use_mask_unit_attn = mask_unit_attn[cur_stage]
|
528 |
+
|
529 |
+
if i - 1 in self.stage_ends:
|
530 |
+
dim_out = int(embed_dim * dim_mul)
|
531 |
+
num_heads = int(num_heads * head_mul)
|
532 |
+
cur_stage += 1
|
533 |
+
if i in q_pool_blocks:
|
534 |
+
flat_mu_size //= flat_q_stride
|
535 |
+
|
536 |
+
block = HieraBlock(
|
537 |
+
dim=embed_dim,
|
538 |
+
dim_out=dim_out,
|
539 |
+
heads=num_heads,
|
540 |
+
mlp_ratio=mlp_ratio,
|
541 |
+
drop_path=dpr[i],
|
542 |
+
init_values=init_values,
|
543 |
+
norm_layer=norm_layer,
|
544 |
+
q_stride=(flat_q_stride if i in q_pool_blocks else 1),
|
545 |
+
window_size=flat_mu_size,
|
546 |
+
use_expand_proj=use_expand_proj,
|
547 |
+
use_mask_unit_attn=use_mask_unit_attn,
|
548 |
+
)
|
549 |
+
embed_dim = dim_out
|
550 |
+
if i in self.stage_ends:
|
551 |
+
self.feature_info += [
|
552 |
+
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
|
553 |
+
self.blocks.append(block)
|
554 |
+
|
555 |
+
self.num_features = self.head_hidden_size = embed_dim
|
556 |
+
self.head = ClNormMlpClassifierHead(
|
557 |
+
embed_dim,
|
558 |
+
num_classes,
|
559 |
+
pool_type=global_pool,
|
560 |
+
drop_rate=drop_rate,
|
561 |
+
norm_layer=norm_layer,
|
562 |
+
input_fmt='NLC',
|
563 |
+
)
|
564 |
+
|
565 |
+
# Initialize everything
|
566 |
+
if sep_pos_embed:
|
567 |
+
nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02)
|
568 |
+
nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02)
|
569 |
+
else:
|
570 |
+
if self.pos_embed is not None:
|
571 |
+
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
572 |
+
if self.pos_embed_win is not None:
|
573 |
+
nn.init.trunc_normal_(self.pos_embed_win, std=0.02)
|
574 |
+
|
575 |
+
if weight_init != 'skip':
|
576 |
+
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
|
577 |
+
init_fn = partial(init_fn, classifier_name='head.fc')
|
578 |
+
named_apply(init_fn, self)
|
579 |
+
if fix_init:
|
580 |
+
self.fix_init_weight()
|
581 |
+
if isinstance(self.head.fc, nn.Linear):
|
582 |
+
self.head.fc.weight.data.mul_(head_init_scale)
|
583 |
+
self.head.fc.bias.data.mul_(head_init_scale)
|
584 |
+
|
585 |
+
def fix_init_weight(self):
|
586 |
+
def rescale(param, _layer_id):
|
587 |
+
param.div_(math.sqrt(2.0 * _layer_id))
|
588 |
+
|
589 |
+
for layer_id, layer in enumerate(self.blocks):
|
590 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
591 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
592 |
+
|
593 |
+
@torch.jit.ignore
|
594 |
+
def no_weight_decay(self):
|
595 |
+
if self.pos_embed is not None:
|
596 |
+
return ["pos_embed"]
|
597 |
+
elif self.pos_embed_abs is not None:
|
598 |
+
return ['pos_embed_abs', 'pos_embed_win']
|
599 |
+
else:
|
600 |
+
return ["pos_embed_spatial", "pos_embed_temporal"]
|
601 |
+
|
602 |
+
@torch.jit.ignore
|
603 |
+
def group_matcher(self, coarse: bool = False) -> Dict:
|
604 |
+
return dict(
|
605 |
+
stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed',
|
606 |
+
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
|
607 |
+
)
|
608 |
+
|
609 |
+
@torch.jit.ignore
|
610 |
+
def set_grad_checkpointing(self, enable: bool = True) -> None:
|
611 |
+
self.grad_checkpointing = enable
|
612 |
+
|
613 |
+
@torch.jit.ignore
|
614 |
+
def get_classifier(self):
|
615 |
+
return self.head.fc
|
616 |
+
|
617 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
|
618 |
+
self.num_classes = num_classes
|
619 |
+
self.head.reset(num_classes, global_pool, reset_other=reset_other)
|
620 |
+
|
621 |
+
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
|
622 |
+
"""
|
623 |
+
Generates a random mask, mask_ratio fraction are dropped.
|
624 |
+
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
|
625 |
+
"""
|
626 |
+
B = x.shape[0]
|
627 |
+
# Tokens selected for masking at mask unit level
|
628 |
+
num_windows = math.prod(self.mask_spatial_shape) # num_mask_units
|
629 |
+
len_keep = int(num_windows * (1 - mask_ratio))
|
630 |
+
noise = torch.rand(B, num_windows, device=x.device)
|
631 |
+
|
632 |
+
# Sort noise for each sample
|
633 |
+
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
|
634 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
635 |
+
|
636 |
+
# Generate the binary mask: 1 is *keep*, 0 is *remove*
|
637 |
+
# Note this is opposite to original MAE
|
638 |
+
mask = torch.zeros([B, num_windows], device=x.device)
|
639 |
+
mask[:, :len_keep] = 1
|
640 |
+
# Unshuffle to get the binary mask
|
641 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
642 |
+
|
643 |
+
return mask.bool()
|
644 |
+
|
645 |
+
def _pos_embed(self, x) -> torch.Tensor:
|
646 |
+
if self.pos_embed_win is not None:
|
647 |
+
# absolute win position embedding, from
|
648 |
+
# Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613)
|
649 |
+
pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape)
|
650 |
+
pos_embed = F.interpolate(
|
651 |
+
self.pos_embed,
|
652 |
+
size=pos_embed_win.shape[-2:],
|
653 |
+
mode='bicubic',
|
654 |
+
antialias=True,
|
655 |
+
)
|
656 |
+
pos_embed = pos_embed + pos_embed_win
|
657 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2)
|
658 |
+
elif self.pos_embed is not None:
|
659 |
+
pos_embed = self.pos_embed
|
660 |
+
else:
|
661 |
+
pos_embed = (
|
662 |
+
self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1)
|
663 |
+
+
|
664 |
+
torch.repeat_interleave(
|
665 |
+
self.pos_embed_temporal,
|
666 |
+
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
|
667 |
+
dim=1,
|
668 |
+
)
|
669 |
+
)
|
670 |
+
x = x + pos_embed
|
671 |
+
return x
|
672 |
+
|
673 |
+
def forward_intermediates(
|
674 |
+
self,
|
675 |
+
x: torch.Tensor,
|
676 |
+
mask: Optional[torch.Tensor] = None,
|
677 |
+
indices: Optional[Union[int, List[int]]] = None,
|
678 |
+
norm: bool = False,
|
679 |
+
stop_early: bool = True,
|
680 |
+
output_fmt: str = 'NCHW',
|
681 |
+
intermediates_only: bool = False,
|
682 |
+
coarse: bool = True,
|
683 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
684 |
+
""" Forward features that returns intermediates.
|
685 |
+
|
686 |
+
Args:
|
687 |
+
x: Input image tensor
|
688 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
689 |
+
norm: Apply norm layer to all intermediates
|
690 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
691 |
+
output_fmt: Shape of intermediate feature outputs
|
692 |
+
intermediates_only: Only return intermediate features
|
693 |
+
Returns:
|
694 |
+
|
695 |
+
"""
|
696 |
+
assert not norm, 'normalization of features not supported'
|
697 |
+
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
|
698 |
+
if coarse:
|
699 |
+
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
700 |
+
take_indices = [self.stage_ends[i] for i in take_indices]
|
701 |
+
max_index = self.stage_ends[max_index]
|
702 |
+
else:
|
703 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
704 |
+
|
705 |
+
if mask is not None:
|
706 |
+
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
|
707 |
+
else:
|
708 |
+
patch_mask = None
|
709 |
+
x = self.patch_embed(x, mask=patch_mask)
|
710 |
+
x = self._pos_embed(x)
|
711 |
+
x = self.unroll(x)
|
712 |
+
|
713 |
+
# Discard masked tokens
|
714 |
+
if mask is not None:
|
715 |
+
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
|
716 |
+
|
717 |
+
intermediates = []
|
718 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
719 |
+
blocks = self.blocks
|
720 |
+
else:
|
721 |
+
blocks = self.blocks[:max_index + 1]
|
722 |
+
for i, blk in enumerate(blocks):
|
723 |
+
x = blk(x)
|
724 |
+
if i in take_indices:
|
725 |
+
x_int = self.reroll(x, i, mask=mask)
|
726 |
+
intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int)
|
727 |
+
|
728 |
+
if intermediates_only:
|
729 |
+
return intermediates
|
730 |
+
|
731 |
+
return x, intermediates
|
732 |
+
|
733 |
+
def prune_intermediate_layers(
|
734 |
+
self,
|
735 |
+
indices: Union[int, List[int]] = 1,
|
736 |
+
prune_norm: bool = False,
|
737 |
+
prune_head: bool = True,
|
738 |
+
coarse: bool = True,
|
739 |
+
):
|
740 |
+
""" Prune layers not required for specified intermediates.
|
741 |
+
"""
|
742 |
+
if coarse:
|
743 |
+
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
744 |
+
max_index = self.stage_ends[max_index]
|
745 |
+
else:
|
746 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
747 |
+
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
748 |
+
if prune_head:
|
749 |
+
self.head.reset(0, reset_other=True)
|
750 |
+
return take_indices
|
751 |
+
|
752 |
+
def forward_features(
|
753 |
+
self,
|
754 |
+
x: torch.Tensor,
|
755 |
+
mask: Optional[torch.Tensor] = None,
|
756 |
+
return_intermediates: bool = False,
|
757 |
+
) -> torch.Tensor:
|
758 |
+
"""
|
759 |
+
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
|
760 |
+
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
|
761 |
+
"""
|
762 |
+
if self.training and self.patch_drop_rate > 0:
|
763 |
+
# using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune
|
764 |
+
assert mask is None
|
765 |
+
mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate)
|
766 |
+
|
767 |
+
if mask is not None:
|
768 |
+
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
|
769 |
+
else:
|
770 |
+
patch_mask = None
|
771 |
+
x = self.patch_embed(x, mask=patch_mask)
|
772 |
+
x = self._pos_embed(x)
|
773 |
+
x = self.unroll(x)
|
774 |
+
|
775 |
+
# Discard masked tokens
|
776 |
+
if mask is not None:
|
777 |
+
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
|
778 |
+
|
779 |
+
intermediates = []
|
780 |
+
for i, blk in enumerate(self.blocks):
|
781 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
782 |
+
x = checkpoint(blk, x)
|
783 |
+
else:
|
784 |
+
x = blk(x)
|
785 |
+
if return_intermediates and i in self.stage_ends:
|
786 |
+
intermediates.append(self.reroll(x, i, mask=mask))
|
787 |
+
|
788 |
+
# x may not always be in spatial order here.
|
789 |
+
# e.g. if q_pool = 2, mask_unit_size = (8, 8), and
|
790 |
+
# q_stride = (2, 2), not all unrolls were consumed,
|
791 |
+
# intermediates[-1] is x in spatial order
|
792 |
+
if return_intermediates:
|
793 |
+
return x, intermediates
|
794 |
+
|
795 |
+
return x
|
796 |
+
|
797 |
+
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
|
798 |
+
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
799 |
+
return x
|
800 |
+
|
801 |
+
def forward(
|
802 |
+
self,
|
803 |
+
x: torch.Tensor,
|
804 |
+
mask: Optional[torch.Tensor] = None,
|
805 |
+
) -> torch.Tensor:
|
806 |
+
x = self.forward_features(x, mask=mask)
|
807 |
+
if mask is None:
|
808 |
+
x = self.forward_head(x)
|
809 |
+
return x
|
810 |
+
|
811 |
+
|
812 |
+
def _cfg(url='', **kwargs):
|
813 |
+
return {
|
814 |
+
'url': url,
|
815 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
816 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
817 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
818 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
819 |
+
**kwargs
|
820 |
+
}
|
821 |
+
|
822 |
+
|
823 |
+
default_cfgs = generate_default_cfgs({
|
824 |
+
"hiera_tiny_224.mae_in1k_ft_in1k": _cfg(
|
825 |
+
hf_hub_id='timm/',
|
826 |
+
license='cc-by-nc-4.0',
|
827 |
+
),
|
828 |
+
"hiera_tiny_224.mae": _cfg(
|
829 |
+
hf_hub_id='timm/',
|
830 |
+
license='cc-by-nc-4.0',
|
831 |
+
num_classes=0,
|
832 |
+
),
|
833 |
+
|
834 |
+
"hiera_small_224.mae_in1k_ft_in1k": _cfg(
|
835 |
+
hf_hub_id='timm/',
|
836 |
+
license='cc-by-nc-4.0',
|
837 |
+
),
|
838 |
+
"hiera_small_224.mae": _cfg(
|
839 |
+
hf_hub_id='timm/',
|
840 |
+
license='cc-by-nc-4.0',
|
841 |
+
num_classes=0,
|
842 |
+
),
|
843 |
+
|
844 |
+
"hiera_base_224.mae_in1k_ft_in1k": _cfg(
|
845 |
+
hf_hub_id='timm/',
|
846 |
+
license='cc-by-nc-4.0',
|
847 |
+
),
|
848 |
+
"hiera_base_224.mae": _cfg(
|
849 |
+
hf_hub_id='timm/',
|
850 |
+
license='cc-by-nc-4.0',
|
851 |
+
num_classes=0,
|
852 |
+
),
|
853 |
+
|
854 |
+
"hiera_base_plus_224.mae_in1k_ft_in1k": _cfg(
|
855 |
+
hf_hub_id='timm/',
|
856 |
+
license='cc-by-nc-4.0',
|
857 |
+
),
|
858 |
+
"hiera_base_plus_224.mae": _cfg(
|
859 |
+
hf_hub_id='timm/',
|
860 |
+
license='cc-by-nc-4.0',
|
861 |
+
num_classes=0,
|
862 |
+
),
|
863 |
+
|
864 |
+
"hiera_large_224.mae_in1k_ft_in1k": _cfg(
|
865 |
+
hf_hub_id='timm/',
|
866 |
+
license='cc-by-nc-4.0',
|
867 |
+
),
|
868 |
+
"hiera_large_224.mae": _cfg(
|
869 |
+
hf_hub_id='timm/',
|
870 |
+
license='cc-by-nc-4.0',
|
871 |
+
num_classes=0,
|
872 |
+
),
|
873 |
+
|
874 |
+
"hiera_huge_224.mae_in1k_ft_in1k": _cfg(
|
875 |
+
hf_hub_id='timm/',
|
876 |
+
license='cc-by-nc-4.0',
|
877 |
+
),
|
878 |
+
"hiera_huge_224.mae": _cfg(
|
879 |
+
hf_hub_id='timm/',
|
880 |
+
license='cc-by-nc-4.0',
|
881 |
+
num_classes=0,
|
882 |
+
),
|
883 |
+
|
884 |
+
"hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg(
|
885 |
+
hf_hub_id='timm/',
|
886 |
+
input_size=(3, 256, 256), crop_pct=0.95,
|
887 |
+
),
|
888 |
+
"hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg(
|
889 |
+
hf_hub_id='timm/',
|
890 |
+
input_size=(3, 256, 256), crop_pct=0.95,
|
891 |
+
),
|
892 |
+
"hiera_small_abswin_256.sbb2_e200_in12k": _cfg(
|
893 |
+
hf_hub_id='timm/',
|
894 |
+
num_classes=11821,
|
895 |
+
input_size=(3, 256, 256), crop_pct=0.95,
|
896 |
+
),
|
897 |
+
"hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg(
|
898 |
+
hf_hub_id='timm/',
|
899 |
+
num_classes=11821,
|
900 |
+
input_size=(3, 256, 256), crop_pct=0.95,
|
901 |
+
),
|
902 |
+
"hiera_base_abswin_256.untrained": _cfg(
|
903 |
+
# hf_hub_id='timm/',
|
904 |
+
input_size=(3, 256, 256), crop_pct=0.95,
|
905 |
+
),
|
906 |
+
})
|
907 |
+
|
908 |
+
|
909 |
+
def checkpoint_filter_fn(state_dict, model=None):
|
910 |
+
state_dict = state_dict.get('model_state', state_dict)
|
911 |
+
output = {}
|
912 |
+
for k, v in state_dict.items():
|
913 |
+
# if k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
|
914 |
+
# # To resize pos embedding when using model at different size from pretrained weights
|
915 |
+
# from timm.layers import resample_abs_pos_embed
|
916 |
+
# v = resample_abs_pos_embed(
|
917 |
+
# v,
|
918 |
+
# new_size=(64, 64),
|
919 |
+
# num_prefix_tokens=0,
|
920 |
+
# verbose=True,
|
921 |
+
# )
|
922 |
+
if 'head.projection.' in k:
|
923 |
+
k = k.replace('head.projection.', 'head.fc.')
|
924 |
+
if k.startswith('encoder_norm.'):
|
925 |
+
k = k.replace('encoder_norm.', 'head.norm.')
|
926 |
+
elif k.startswith('norm.'):
|
927 |
+
k = k.replace('norm.', 'head.norm.')
|
928 |
+
if k == 'pos_embed_abs':
|
929 |
+
k = 'pos_embed'
|
930 |
+
output[k] = v
|
931 |
+
return output
|
932 |
+
|
933 |
+
|
934 |
+
def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera:
|
935 |
+
out_indices = kwargs.pop('out_indices', 4)
|
936 |
+
|
937 |
+
return build_model_with_cfg(
|
938 |
+
Hiera,
|
939 |
+
variant,
|
940 |
+
pretrained,
|
941 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
942 |
+
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
943 |
+
**kwargs,
|
944 |
+
)
|
945 |
+
|
946 |
+
|
947 |
+
@register_model
|
948 |
+
def hiera_tiny_224(pretrained=False, **kwargs):
|
949 |
+
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2))
|
950 |
+
return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
951 |
+
|
952 |
+
|
953 |
+
@register_model
|
954 |
+
def hiera_small_224(pretrained=False, **kwargs):
|
955 |
+
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2))
|
956 |
+
return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
957 |
+
|
958 |
+
|
959 |
+
@register_model
|
960 |
+
def hiera_base_224(pretrained=False, **kwargs):
|
961 |
+
model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
|
962 |
+
return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
963 |
+
|
964 |
+
|
965 |
+
@register_model
|
966 |
+
def hiera_base_plus_224(pretrained=False, **kwargs):
|
967 |
+
model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3))
|
968 |
+
return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
969 |
+
|
970 |
+
|
971 |
+
@register_model
|
972 |
+
def hiera_large_224(pretrained=False, **kwargs):
|
973 |
+
model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4))
|
974 |
+
return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
975 |
+
|
976 |
+
|
977 |
+
@register_model
|
978 |
+
def hiera_huge_224(pretrained=False, **kwargs):
|
979 |
+
model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4))
|
980 |
+
return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
981 |
+
|
982 |
+
|
983 |
+
@register_model
|
984 |
+
def hiera_small_abswin_256(pretrained=False, **kwargs):
|
985 |
+
model_args = dict(
|
986 |
+
embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16),
|
987 |
+
init_values=1e-5, weight_init='jax', use_expand_proj=False,
|
988 |
+
)
|
989 |
+
return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
990 |
+
|
991 |
+
|
992 |
+
@register_model
|
993 |
+
def hiera_base_abswin_256(pretrained=False, **kwargs):
|
994 |
+
model_args = dict(
|
995 |
+
embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax')
|
996 |
+
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
pytorch-image-models/timm/models/hieradet_sam2.py
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from copy import deepcopy
|
3 |
+
from functools import partial
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.jit import Final
|
10 |
+
|
11 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
12 |
+
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
|
13 |
+
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
|
14 |
+
|
15 |
+
from ._builder import build_model_with_cfg
|
16 |
+
from ._features import feature_take_indices
|
17 |
+
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
|
18 |
+
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
19 |
+
|
20 |
+
|
21 |
+
def window_partition(x, window_size: Tuple[int, int]):
|
22 |
+
"""
|
23 |
+
Partition into non-overlapping windows with padding if needed.
|
24 |
+
Args:
|
25 |
+
x (tensor): input tokens with [B, H, W, C].
|
26 |
+
window_size (int): window size.
|
27 |
+
Returns:
|
28 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
29 |
+
(Hp, Wp): padded height and width before partition
|
30 |
+
"""
|
31 |
+
B, H, W, C = x.shape
|
32 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
33 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
34 |
+
return windows
|
35 |
+
|
36 |
+
|
37 |
+
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
|
38 |
+
"""
|
39 |
+
Window unpartition into original sequences and removing padding.
|
40 |
+
Args:
|
41 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
42 |
+
window_size (int): window size.
|
43 |
+
hw (Tuple): original height and width (H, W) before padding.
|
44 |
+
Returns:
|
45 |
+
x: unpartitioned sequences with [B, H, W, C].
|
46 |
+
"""
|
47 |
+
H, W = hw
|
48 |
+
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
|
49 |
+
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
50 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
|
55 |
+
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
|
56 |
+
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
|
57 |
+
Hp, Wp = H + pad_h, W + pad_w
|
58 |
+
return Hp, Wp, pad_h, pad_w
|
59 |
+
|
60 |
+
|
61 |
+
class MultiScaleAttention(nn.Module):
|
62 |
+
fused_attn: torch.jit.Final[bool]
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
dim: int,
|
67 |
+
dim_out: int,
|
68 |
+
num_heads: int,
|
69 |
+
q_pool: nn.Module = None,
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
self.dim = dim
|
73 |
+
self.dim_out = dim_out
|
74 |
+
self.num_heads = num_heads
|
75 |
+
head_dim = dim_out // num_heads
|
76 |
+
self.scale = head_dim ** -0.5
|
77 |
+
self.fused_attn = use_fused_attn()
|
78 |
+
|
79 |
+
self.q_pool = q_pool
|
80 |
+
self.qkv = nn.Linear(dim, dim_out * 3)
|
81 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
82 |
+
|
83 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
84 |
+
B, H, W, _ = x.shape
|
85 |
+
|
86 |
+
# qkv with shape (B, H * W, 3, nHead, C)
|
87 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
88 |
+
|
89 |
+
# q, k, v with shape (B, H * W, nheads, C)
|
90 |
+
q, k, v = torch.unbind(qkv, 2)
|
91 |
+
|
92 |
+
# Q pooling (for downsample at stage changes)
|
93 |
+
if self.q_pool is not None:
|
94 |
+
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
|
95 |
+
q = self.q_pool(q).permute(0, 2, 3, 1)
|
96 |
+
H, W = q.shape[1:3] # downsampled shape
|
97 |
+
q = q.reshape(B, H * W, self.num_heads, -1)
|
98 |
+
|
99 |
+
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
100 |
+
q = q.transpose(1, 2)
|
101 |
+
k = k.transpose(1, 2)
|
102 |
+
v = v.transpose(1, 2)
|
103 |
+
if self.fused_attn:
|
104 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
105 |
+
else:
|
106 |
+
q = q * self.scale
|
107 |
+
attn = q @ k.transpose(-1, -2)
|
108 |
+
attn = attn.softmax(dim=-1)
|
109 |
+
x = attn @ v
|
110 |
+
|
111 |
+
# Transpose back
|
112 |
+
x = x.transpose(1, 2).reshape(B, H, W, -1)
|
113 |
+
|
114 |
+
x = self.proj(x)
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class MultiScaleBlock(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
dim: int,
|
122 |
+
dim_out: int,
|
123 |
+
num_heads: int,
|
124 |
+
mlp_ratio: float = 4.0,
|
125 |
+
q_stride: Optional[Tuple[int, int]] = None,
|
126 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
127 |
+
act_layer: Union[nn.Module, str] = "GELU",
|
128 |
+
window_size: int = 0,
|
129 |
+
init_values: Optional[float] = None,
|
130 |
+
drop_path: float = 0.0,
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
norm_layer = get_norm_layer(norm_layer)
|
134 |
+
act_layer = get_act_layer(act_layer)
|
135 |
+
self.window_size = to_2tuple(window_size)
|
136 |
+
self.is_windowed = any(self.window_size)
|
137 |
+
self.dim = dim
|
138 |
+
self.dim_out = dim_out
|
139 |
+
self.q_stride = q_stride
|
140 |
+
|
141 |
+
if dim != dim_out:
|
142 |
+
self.proj = nn.Linear(dim, dim_out)
|
143 |
+
else:
|
144 |
+
self.proj = nn.Identity()
|
145 |
+
self.pool = None
|
146 |
+
if self.q_stride:
|
147 |
+
# note make a different instance for this Module so that it's not shared with attn module
|
148 |
+
self.pool = nn.MaxPool2d(
|
149 |
+
kernel_size=q_stride,
|
150 |
+
stride=q_stride,
|
151 |
+
ceil_mode=False,
|
152 |
+
)
|
153 |
+
|
154 |
+
self.norm1 = norm_layer(dim)
|
155 |
+
self.attn = MultiScaleAttention(
|
156 |
+
dim,
|
157 |
+
dim_out,
|
158 |
+
num_heads=num_heads,
|
159 |
+
q_pool=deepcopy(self.pool),
|
160 |
+
)
|
161 |
+
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
|
162 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
163 |
+
|
164 |
+
self.norm2 = norm_layer(dim_out)
|
165 |
+
self.mlp = Mlp(
|
166 |
+
dim_out,
|
167 |
+
int(dim_out * mlp_ratio),
|
168 |
+
act_layer=act_layer,
|
169 |
+
)
|
170 |
+
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
|
171 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
172 |
+
|
173 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
174 |
+
shortcut = x # B, H, W, C
|
175 |
+
x = self.norm1(x)
|
176 |
+
|
177 |
+
# Skip connection
|
178 |
+
if self.dim != self.dim_out:
|
179 |
+
shortcut = self.proj(x)
|
180 |
+
if self.pool is not None:
|
181 |
+
shortcut = shortcut.permute(0, 3, 1, 2)
|
182 |
+
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
|
183 |
+
|
184 |
+
# Window partition
|
185 |
+
window_size = self.window_size
|
186 |
+
H, W = x.shape[1:3]
|
187 |
+
Hp, Wp = H, W # keep torchscript happy
|
188 |
+
if self.is_windowed:
|
189 |
+
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
190 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
191 |
+
x = window_partition(x, window_size)
|
192 |
+
|
193 |
+
# Window Attention + Q Pooling (if stage change)
|
194 |
+
x = self.attn(x)
|
195 |
+
if self.q_stride is not None:
|
196 |
+
# Shapes have changed due to Q pooling
|
197 |
+
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
|
198 |
+
H, W = shortcut.shape[1:3]
|
199 |
+
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
200 |
+
|
201 |
+
# Reverse window partition
|
202 |
+
if self.is_windowed:
|
203 |
+
x = window_unpartition(x, window_size, (Hp, Wp))
|
204 |
+
x = x[:, :H, :W, :].contiguous() # unpad
|
205 |
+
|
206 |
+
x = shortcut + self.drop_path1(self.ls1(x))
|
207 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class HieraPatchEmbed(nn.Module):
|
212 |
+
"""
|
213 |
+
Image to Patch Embedding.
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
kernel_size: Tuple[int, ...] = (7, 7),
|
219 |
+
stride: Tuple[int, ...] = (4, 4),
|
220 |
+
padding: Tuple[int, ...] = (3, 3),
|
221 |
+
in_chans: int = 3,
|
222 |
+
embed_dim: int = 768,
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
Args:
|
226 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
227 |
+
stride (Tuple): stride of the projection layer.
|
228 |
+
padding (Tuple): padding size of the projection layer.
|
229 |
+
in_chans (int): Number of input image channels.
|
230 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
231 |
+
"""
|
232 |
+
super().__init__()
|
233 |
+
self.proj = nn.Conv2d(
|
234 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
235 |
+
)
|
236 |
+
|
237 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
238 |
+
x = self.proj(x)
|
239 |
+
# B C H W -> B H W C
|
240 |
+
x = x.permute(0, 2, 3, 1)
|
241 |
+
return x
|
242 |
+
|
243 |
+
|
244 |
+
class HieraDet(nn.Module):
|
245 |
+
"""
|
246 |
+
Reference: https://arxiv.org/abs/2306.00989
|
247 |
+
"""
|
248 |
+
|
249 |
+
def __init__(
|
250 |
+
self,
|
251 |
+
in_chans: int = 3,
|
252 |
+
num_classes: int = 1000,
|
253 |
+
global_pool: str = 'avg',
|
254 |
+
embed_dim: int = 96, # initial embed dim
|
255 |
+
num_heads: int = 1, # initial number of heads
|
256 |
+
patch_kernel: Tuple[int, ...] = (7, 7),
|
257 |
+
patch_stride: Tuple[int, ...] = (4, 4),
|
258 |
+
patch_padding: Tuple[int, ...] = (3, 3),
|
259 |
+
patch_size: Optional[Tuple[int, ...]] = None,
|
260 |
+
q_pool: int = 3, # number of q_pool stages
|
261 |
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
262 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
263 |
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
264 |
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
265 |
+
global_pos_size: Tuple[int, int] = (7, 7),
|
266 |
+
# window size per stage, when not using global att.
|
267 |
+
window_spec: Tuple[int, ...] = (
|
268 |
+
8,
|
269 |
+
4,
|
270 |
+
14,
|
271 |
+
7,
|
272 |
+
),
|
273 |
+
# global attn in these blocks
|
274 |
+
global_att_blocks: Tuple[int, ...] = (
|
275 |
+
12,
|
276 |
+
16,
|
277 |
+
20,
|
278 |
+
),
|
279 |
+
init_values: Optional[float] = None,
|
280 |
+
weight_init: str = '',
|
281 |
+
fix_init: bool = True,
|
282 |
+
head_init_scale: float = 0.001,
|
283 |
+
drop_rate: float = 0.0,
|
284 |
+
drop_path_rate: float = 0.0, # stochastic depth
|
285 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
286 |
+
act_layer: Union[nn.Module, str] = "GELU",
|
287 |
+
):
|
288 |
+
super().__init__()
|
289 |
+
norm_layer = get_norm_layer(norm_layer)
|
290 |
+
act_layer = get_act_layer(act_layer)
|
291 |
+
assert len(stages) == len(window_spec)
|
292 |
+
self.num_classes = num_classes
|
293 |
+
self.window_spec = window_spec
|
294 |
+
self.output_fmt = 'NHWC'
|
295 |
+
|
296 |
+
depth = sum(stages)
|
297 |
+
self.q_stride = q_stride
|
298 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
299 |
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
300 |
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
301 |
+
|
302 |
+
if patch_size is not None:
|
303 |
+
# use a non-overlapping vit style patch embed
|
304 |
+
self.patch_embed = PatchEmbed(
|
305 |
+
img_size=None,
|
306 |
+
patch_size=patch_size,
|
307 |
+
in_chans=in_chans,
|
308 |
+
embed_dim=embed_dim,
|
309 |
+
output_fmt='NHWC',
|
310 |
+
dynamic_img_pad=True,
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
self.patch_embed = HieraPatchEmbed(
|
314 |
+
kernel_size=patch_kernel,
|
315 |
+
stride=patch_stride,
|
316 |
+
padding=patch_padding,
|
317 |
+
in_chans=in_chans,
|
318 |
+
embed_dim=embed_dim,
|
319 |
+
)
|
320 |
+
# Which blocks have global att?
|
321 |
+
self.global_att_blocks = global_att_blocks
|
322 |
+
|
323 |
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
324 |
+
self.global_pos_size = global_pos_size
|
325 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
|
326 |
+
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
327 |
+
|
328 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
329 |
+
cur_stage = 0
|
330 |
+
self.blocks = nn.Sequential()
|
331 |
+
self.feature_info = []
|
332 |
+
for i in range(depth):
|
333 |
+
dim_out = embed_dim
|
334 |
+
# lags by a block, so first block of
|
335 |
+
# next stage uses an initial window size
|
336 |
+
# of previous stage and final window size of current stage
|
337 |
+
window_size = self.window_spec[cur_stage]
|
338 |
+
|
339 |
+
if self.global_att_blocks is not None:
|
340 |
+
window_size = 0 if i in self.global_att_blocks else window_size
|
341 |
+
|
342 |
+
if i - 1 in self.stage_ends:
|
343 |
+
dim_out = int(embed_dim * dim_mul)
|
344 |
+
num_heads = int(num_heads * head_mul)
|
345 |
+
cur_stage += 1
|
346 |
+
|
347 |
+
block = MultiScaleBlock(
|
348 |
+
dim=embed_dim,
|
349 |
+
dim_out=dim_out,
|
350 |
+
num_heads=num_heads,
|
351 |
+
drop_path=dpr[i],
|
352 |
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
353 |
+
window_size=window_size,
|
354 |
+
norm_layer=norm_layer,
|
355 |
+
act_layer=act_layer,
|
356 |
+
)
|
357 |
+
|
358 |
+
embed_dim = dim_out
|
359 |
+
self.blocks.append(block)
|
360 |
+
if i in self.stage_ends:
|
361 |
+
self.feature_info += [
|
362 |
+
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
|
363 |
+
|
364 |
+
self.num_features = self.head_hidden_size = embed_dim
|
365 |
+
self.head = ClNormMlpClassifierHead(
|
366 |
+
embed_dim,
|
367 |
+
num_classes,
|
368 |
+
pool_type=global_pool,
|
369 |
+
drop_rate=drop_rate,
|
370 |
+
norm_layer=norm_layer,
|
371 |
+
)
|
372 |
+
|
373 |
+
# Initialize everything
|
374 |
+
if self.pos_embed is not None:
|
375 |
+
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
376 |
+
|
377 |
+
if self.pos_embed_window is not None:
|
378 |
+
nn.init.trunc_normal_(self.pos_embed_window, std=0.02)
|
379 |
+
|
380 |
+
if weight_init != 'skip':
|
381 |
+
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
|
382 |
+
init_fn = partial(init_fn, classifier_name='head.fc')
|
383 |
+
named_apply(init_fn, self)
|
384 |
+
|
385 |
+
if fix_init:
|
386 |
+
self.fix_init_weight()
|
387 |
+
|
388 |
+
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
|
389 |
+
self.head.fc.weight.data.mul_(head_init_scale)
|
390 |
+
self.head.fc.bias.data.mul_(head_init_scale)
|
391 |
+
|
392 |
+
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
|
393 |
+
h, w = x.shape[1:3]
|
394 |
+
window_embed = self.pos_embed_window
|
395 |
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
396 |
+
tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
|
397 |
+
tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
|
398 |
+
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
|
399 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
400 |
+
return x + pos_embed
|
401 |
+
|
402 |
+
def fix_init_weight(self):
|
403 |
+
def rescale(param, _layer_id):
|
404 |
+
param.div_(math.sqrt(2.0 * _layer_id))
|
405 |
+
|
406 |
+
for layer_id, layer in enumerate(self.blocks):
|
407 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
408 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
409 |
+
|
410 |
+
@torch.jit.ignore
|
411 |
+
def no_weight_decay(self):
|
412 |
+
return ['pos_embed', 'pos_embed_window']
|
413 |
+
|
414 |
+
@torch.jit.ignore
|
415 |
+
def group_matcher(self, coarse: bool = False) -> Dict:
|
416 |
+
return dict(
|
417 |
+
stem=r'^pos_embed|pos_embed_window|patch_embed',
|
418 |
+
blocks=[(r'^blocks\.(\d+)', None)]
|
419 |
+
)
|
420 |
+
|
421 |
+
@torch.jit.ignore
|
422 |
+
def set_grad_checkpointing(self, enable: bool = True) -> None:
|
423 |
+
self.grad_checkpointing = enable
|
424 |
+
|
425 |
+
@torch.jit.ignore
|
426 |
+
def get_classifier(self):
|
427 |
+
return self.head.fc
|
428 |
+
|
429 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
|
430 |
+
self.num_classes = num_classes
|
431 |
+
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)
|
432 |
+
|
433 |
+
def forward_intermediates(
|
434 |
+
self,
|
435 |
+
x: torch.Tensor,
|
436 |
+
indices: Optional[Union[int, List[int]]] = None,
|
437 |
+
norm: bool = False,
|
438 |
+
stop_early: bool = True,
|
439 |
+
output_fmt: str = 'NCHW',
|
440 |
+
intermediates_only: bool = False,
|
441 |
+
coarse: bool = True,
|
442 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
443 |
+
""" Forward features that returns intermediates.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
x: Input image tensor
|
447 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
448 |
+
norm: Apply norm layer to all intermediates
|
449 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
450 |
+
output_fmt: Shape of intermediate feature outputs
|
451 |
+
intermediates_only: Only return intermediate features
|
452 |
+
coarse: Take coarse features (stage ends) if true, otherwise all block featrures
|
453 |
+
Returns:
|
454 |
+
|
455 |
+
"""
|
456 |
+
assert not norm, 'normalization of features not supported'
|
457 |
+
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
|
458 |
+
if coarse:
|
459 |
+
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
460 |
+
take_indices = [self.stage_ends[i] for i in take_indices]
|
461 |
+
max_index = self.stage_ends[max_index]
|
462 |
+
else:
|
463 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
464 |
+
|
465 |
+
x = self.patch_embed(x)
|
466 |
+
x = self._pos_embed(x)
|
467 |
+
|
468 |
+
intermediates = []
|
469 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
470 |
+
blocks = self.blocks
|
471 |
+
else:
|
472 |
+
blocks = self.blocks[:max_index + 1]
|
473 |
+
for i, blk in enumerate(blocks):
|
474 |
+
x = blk(x)
|
475 |
+
if i in take_indices:
|
476 |
+
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
|
477 |
+
intermediates.append(x_out)
|
478 |
+
|
479 |
+
if intermediates_only:
|
480 |
+
return intermediates
|
481 |
+
|
482 |
+
return x, intermediates
|
483 |
+
|
484 |
+
def prune_intermediate_layers(
|
485 |
+
self,
|
486 |
+
indices: Union[int, List[int]] = 1,
|
487 |
+
prune_norm: bool = False,
|
488 |
+
prune_head: bool = True,
|
489 |
+
coarse: bool = True,
|
490 |
+
):
|
491 |
+
""" Prune layers not required for specified intermediates.
|
492 |
+
"""
|
493 |
+
if coarse:
|
494 |
+
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
495 |
+
max_index = self.stage_ends[max_index]
|
496 |
+
else:
|
497 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
498 |
+
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
499 |
+
if prune_head:
|
500 |
+
self.head.reset(0, reset_other=prune_norm)
|
501 |
+
return take_indices
|
502 |
+
|
503 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
504 |
+
x = self.patch_embed(x) # BHWC
|
505 |
+
x = self._pos_embed(x)
|
506 |
+
for i, blk in enumerate(self.blocks):
|
507 |
+
x = blk(x)
|
508 |
+
return x
|
509 |
+
|
510 |
+
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
|
511 |
+
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
512 |
+
return x
|
513 |
+
|
514 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
515 |
+
x = self.forward_features(x)
|
516 |
+
x = self.forward_head(x)
|
517 |
+
return x
|
518 |
+
|
519 |
+
|
520 |
+
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
|
521 |
+
def _cfg(url='', **kwargs):
|
522 |
+
return {
|
523 |
+
'url': url,
|
524 |
+
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
|
525 |
+
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
|
526 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
527 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
528 |
+
**kwargs
|
529 |
+
}
|
530 |
+
|
531 |
+
|
532 |
+
default_cfgs = generate_default_cfgs({
|
533 |
+
"sam2_hiera_tiny.r224": _cfg(
|
534 |
+
hf_hub_id='facebook/sam2-hiera-tiny',
|
535 |
+
hf_hub_filename='sam2_hiera_tiny.pt',
|
536 |
+
input_size=(3, 224, 224), pool_size=(7, 7),
|
537 |
+
), # FIXME reduced res for testing
|
538 |
+
"sam2_hiera_tiny.r896": _cfg(
|
539 |
+
hf_hub_id='facebook/sam2-hiera-tiny',
|
540 |
+
hf_hub_filename='sam2_hiera_tiny.pt',
|
541 |
+
),
|
542 |
+
"sam2_hiera_small": _cfg(
|
543 |
+
hf_hub_id='facebook/sam2-hiera-small',
|
544 |
+
hf_hub_filename='sam2_hiera_small.pt',
|
545 |
+
),
|
546 |
+
"sam2_hiera_base_plus": _cfg(
|
547 |
+
hf_hub_id='facebook/sam2-hiera-base-plus',
|
548 |
+
hf_hub_filename='sam2_hiera_base_plus.pt',
|
549 |
+
),
|
550 |
+
"sam2_hiera_large": _cfg(
|
551 |
+
hf_hub_id='facebook/sam2-hiera-large',
|
552 |
+
hf_hub_filename='sam2_hiera_large.pt',
|
553 |
+
min_input_size=(3, 256, 256),
|
554 |
+
input_size=(3, 1024, 1024), pool_size=(32, 32),
|
555 |
+
),
|
556 |
+
"hieradet_small.untrained": _cfg(
|
557 |
+
num_classes=1000,
|
558 |
+
input_size=(3, 256, 256), pool_size=(8, 8),
|
559 |
+
),
|
560 |
+
})
|
561 |
+
|
562 |
+
|
563 |
+
def checkpoint_filter_fn(state_dict, model=None, prefix=''):
|
564 |
+
state_dict = state_dict.get('model', state_dict)
|
565 |
+
|
566 |
+
output = {}
|
567 |
+
for k, v in state_dict.items():
|
568 |
+
if k.startswith(prefix):
|
569 |
+
k = k.replace(prefix, '')
|
570 |
+
else:
|
571 |
+
continue
|
572 |
+
k = k.replace('mlp.layers.0', 'mlp.fc1')
|
573 |
+
k = k.replace('mlp.layers.1', 'mlp.fc2')
|
574 |
+
output[k] = v
|
575 |
+
return output
|
576 |
+
|
577 |
+
|
578 |
+
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
|
579 |
+
out_indices = kwargs.pop('out_indices', 4)
|
580 |
+
checkpoint_prefix = ''
|
581 |
+
if 'sam2' in variant:
|
582 |
+
# SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
|
583 |
+
# This is workaround loading with num_classes=0 w/o removing norm-layer.
|
584 |
+
kwargs.setdefault('pretrained_strict', False)
|
585 |
+
checkpoint_prefix = 'image_encoder.trunk.'
|
586 |
+
return build_model_with_cfg(
|
587 |
+
HieraDet,
|
588 |
+
variant,
|
589 |
+
pretrained,
|
590 |
+
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
|
591 |
+
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
592 |
+
**kwargs,
|
593 |
+
)
|
594 |
+
|
595 |
+
|
596 |
+
@register_model
|
597 |
+
def sam2_hiera_tiny(pretrained=False, **kwargs):
|
598 |
+
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
|
599 |
+
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
|
600 |
+
|
601 |
+
|
602 |
+
@register_model
|
603 |
+
def sam2_hiera_small(pretrained=False, **kwargs):
|
604 |
+
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
|
605 |
+
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
606 |
+
|
607 |
+
|
608 |
+
@register_model
|
609 |
+
def sam2_hiera_base_plus(pretrained=False, **kwargs):
|
610 |
+
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
|
611 |
+
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))
|
612 |
+
|
613 |
+
|
614 |
+
@register_model
|
615 |
+
def sam2_hiera_large(pretrained=False, **kwargs):
|
616 |
+
model_args = dict(
|
617 |
+
embed_dim=144,
|
618 |
+
num_heads=2,
|
619 |
+
stages=(2, 6, 36, 4),
|
620 |
+
global_att_blocks=(23, 33, 43),
|
621 |
+
window_spec=(8, 4, 16, 8),
|
622 |
+
)
|
623 |
+
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))
|
624 |
+
|
625 |
+
|
626 |
+
@register_model
|
627 |
+
def hieradet_small(pretrained=False, **kwargs):
|
628 |
+
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
|
629 |
+
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
630 |
+
|
631 |
+
|
632 |
+
# @register_model
|
633 |
+
# def hieradet_base(pretrained=False, **kwargs):
|
634 |
+
# model_args = dict(window_spec=(8, 4, 16, 8))
|
635 |
+
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))
|
pytorch-image-models/timm/models/hub.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._hub import *
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning)
|
pytorch-image-models/timm/models/inception_next.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
InceptionNeXt paper: https://arxiv.org/abs/2303.16900
|
3 |
+
Original implementation & weights from: https://github.com/sail-sg/inceptionnext
|
4 |
+
"""
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
13 |
+
from timm.layers import trunc_normal_, DropPath, to_2tuple, get_padding, SelectAdaptivePool2d
|
14 |
+
from ._builder import build_model_with_cfg
|
15 |
+
from ._manipulate import checkpoint_seq
|
16 |
+
from ._registry import register_model, generate_default_cfgs
|
17 |
+
|
18 |
+
__all__ = ['MetaNeXt']
|
19 |
+
|
20 |
+
|
21 |
+
class InceptionDWConv2d(nn.Module):
|
22 |
+
""" Inception depthwise convolution
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
in_chs,
|
28 |
+
square_kernel_size=3,
|
29 |
+
band_kernel_size=11,
|
30 |
+
branch_ratio=0.125,
|
31 |
+
dilation=1,
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
gc = int(in_chs * branch_ratio) # channel numbers of a convolution branch
|
36 |
+
square_padding = get_padding(square_kernel_size, dilation=dilation)
|
37 |
+
band_padding = get_padding(band_kernel_size, dilation=dilation)
|
38 |
+
self.dwconv_hw = nn.Conv2d(
|
39 |
+
gc, gc, square_kernel_size,
|
40 |
+
padding=square_padding, dilation=dilation, groups=gc)
|
41 |
+
self.dwconv_w = nn.Conv2d(
|
42 |
+
gc, gc, (1, band_kernel_size),
|
43 |
+
padding=(0, band_padding), dilation=(1, dilation), groups=gc)
|
44 |
+
self.dwconv_h = nn.Conv2d(
|
45 |
+
gc, gc, (band_kernel_size, 1),
|
46 |
+
padding=(band_padding, 0), dilation=(dilation, 1), groups=gc)
|
47 |
+
self.split_indexes = (in_chs - 3 * gc, gc, gc, gc)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
|
51 |
+
return torch.cat((
|
52 |
+
x_id,
|
53 |
+
self.dwconv_hw(x_hw),
|
54 |
+
self.dwconv_w(x_w),
|
55 |
+
self.dwconv_h(x_h)
|
56 |
+
), dim=1,
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
class ConvMlp(nn.Module):
|
61 |
+
""" MLP using 1x1 convs that keeps spatial dims
|
62 |
+
copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
in_features,
|
68 |
+
hidden_features=None,
|
69 |
+
out_features=None,
|
70 |
+
act_layer=nn.ReLU,
|
71 |
+
norm_layer=None,
|
72 |
+
bias=True,
|
73 |
+
drop=0.,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
out_features = out_features or in_features
|
77 |
+
hidden_features = hidden_features or in_features
|
78 |
+
bias = to_2tuple(bias)
|
79 |
+
|
80 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
|
81 |
+
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
|
82 |
+
self.act = act_layer()
|
83 |
+
self.drop = nn.Dropout(drop)
|
84 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
x = self.fc1(x)
|
88 |
+
x = self.norm(x)
|
89 |
+
x = self.act(x)
|
90 |
+
x = self.drop(x)
|
91 |
+
x = self.fc2(x)
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class MlpClassifierHead(nn.Module):
|
96 |
+
""" MLP classification head
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
in_features,
|
102 |
+
num_classes=1000,
|
103 |
+
pool_type='avg',
|
104 |
+
mlp_ratio=3,
|
105 |
+
act_layer=nn.GELU,
|
106 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
107 |
+
drop=0.,
|
108 |
+
bias=True
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
self.use_conv = False
|
112 |
+
self.in_features = in_features
|
113 |
+
self.num_features = hidden_features = int(mlp_ratio * in_features)
|
114 |
+
|
115 |
+
assert pool_type, 'Cannot disable pooling'
|
116 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True)
|
117 |
+
|
118 |
+
self.fc1 = nn.Linear(in_features * self.global_pool.feat_mult(), hidden_features, bias=bias)
|
119 |
+
self.act = act_layer()
|
120 |
+
self.norm = norm_layer(hidden_features)
|
121 |
+
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
|
122 |
+
self.drop = nn.Dropout(drop)
|
123 |
+
|
124 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None):
|
125 |
+
if pool_type is not None:
|
126 |
+
assert pool_type, 'Cannot disable pooling'
|
127 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True)
|
128 |
+
|
129 |
+
self.fc2 = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
130 |
+
|
131 |
+
def forward(self, x, pre_logits: bool = False):
|
132 |
+
x = self.global_pool(x)
|
133 |
+
x = self.fc1(x)
|
134 |
+
x = self.act(x)
|
135 |
+
x = self.norm(x)
|
136 |
+
x = self.drop(x)
|
137 |
+
return x if pre_logits else self.fc2(x)
|
138 |
+
|
139 |
+
|
140 |
+
class MetaNeXtBlock(nn.Module):
|
141 |
+
""" MetaNeXtBlock Block
|
142 |
+
Args:
|
143 |
+
dim (int): Number of input channels.
|
144 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
145 |
+
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
dim,
|
151 |
+
dilation=1,
|
152 |
+
token_mixer=InceptionDWConv2d,
|
153 |
+
norm_layer=nn.BatchNorm2d,
|
154 |
+
mlp_layer=ConvMlp,
|
155 |
+
mlp_ratio=4,
|
156 |
+
act_layer=nn.GELU,
|
157 |
+
ls_init_value=1e-6,
|
158 |
+
drop_path=0.,
|
159 |
+
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
self.token_mixer = token_mixer(dim, dilation=dilation)
|
163 |
+
self.norm = norm_layer(dim)
|
164 |
+
self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
|
165 |
+
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
|
166 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
shortcut = x
|
170 |
+
x = self.token_mixer(x)
|
171 |
+
x = self.norm(x)
|
172 |
+
x = self.mlp(x)
|
173 |
+
if self.gamma is not None:
|
174 |
+
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
175 |
+
x = self.drop_path(x) + shortcut
|
176 |
+
return x
|
177 |
+
|
178 |
+
|
179 |
+
class MetaNeXtStage(nn.Module):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
in_chs,
|
183 |
+
out_chs,
|
184 |
+
stride=2,
|
185 |
+
depth=2,
|
186 |
+
dilation=(1, 1),
|
187 |
+
drop_path_rates=None,
|
188 |
+
ls_init_value=1.0,
|
189 |
+
token_mixer=InceptionDWConv2d,
|
190 |
+
act_layer=nn.GELU,
|
191 |
+
norm_layer=None,
|
192 |
+
mlp_ratio=4,
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
self.grad_checkpointing = False
|
196 |
+
if stride > 1 or dilation[0] != dilation[1]:
|
197 |
+
self.downsample = nn.Sequential(
|
198 |
+
norm_layer(in_chs),
|
199 |
+
nn.Conv2d(
|
200 |
+
in_chs,
|
201 |
+
out_chs,
|
202 |
+
kernel_size=2,
|
203 |
+
stride=stride,
|
204 |
+
dilation=dilation[0],
|
205 |
+
),
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
self.downsample = nn.Identity()
|
209 |
+
|
210 |
+
drop_path_rates = drop_path_rates or [0.] * depth
|
211 |
+
stage_blocks = []
|
212 |
+
for i in range(depth):
|
213 |
+
stage_blocks.append(MetaNeXtBlock(
|
214 |
+
dim=out_chs,
|
215 |
+
dilation=dilation[1],
|
216 |
+
drop_path=drop_path_rates[i],
|
217 |
+
ls_init_value=ls_init_value,
|
218 |
+
token_mixer=token_mixer,
|
219 |
+
act_layer=act_layer,
|
220 |
+
norm_layer=norm_layer,
|
221 |
+
mlp_ratio=mlp_ratio,
|
222 |
+
))
|
223 |
+
self.blocks = nn.Sequential(*stage_blocks)
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
x = self.downsample(x)
|
227 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
228 |
+
x = checkpoint_seq(self.blocks, x)
|
229 |
+
else:
|
230 |
+
x = self.blocks(x)
|
231 |
+
return x
|
232 |
+
|
233 |
+
|
234 |
+
class MetaNeXt(nn.Module):
|
235 |
+
r""" MetaNeXt
|
236 |
+
A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/abs/2303.16900
|
237 |
+
|
238 |
+
Args:
|
239 |
+
in_chans (int): Number of input image channels. Default: 3
|
240 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
241 |
+
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)
|
242 |
+
dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)
|
243 |
+
token_mixers: Token mixer function. Default: nn.Identity
|
244 |
+
norm_layer: Normalization layer. Default: nn.BatchNorm2d
|
245 |
+
act_layer: Activation function for MLP. Default: nn.GELU
|
246 |
+
mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)
|
247 |
+
drop_rate (float): Head dropout rate
|
248 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
249 |
+
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(
|
253 |
+
self,
|
254 |
+
in_chans=3,
|
255 |
+
num_classes=1000,
|
256 |
+
global_pool='avg',
|
257 |
+
output_stride=32,
|
258 |
+
depths=(3, 3, 9, 3),
|
259 |
+
dims=(96, 192, 384, 768),
|
260 |
+
token_mixers=InceptionDWConv2d,
|
261 |
+
norm_layer=nn.BatchNorm2d,
|
262 |
+
act_layer=nn.GELU,
|
263 |
+
mlp_ratios=(4, 4, 4, 3),
|
264 |
+
drop_rate=0.,
|
265 |
+
drop_path_rate=0.,
|
266 |
+
ls_init_value=1e-6,
|
267 |
+
):
|
268 |
+
super().__init__()
|
269 |
+
|
270 |
+
num_stage = len(depths)
|
271 |
+
if not isinstance(token_mixers, (list, tuple)):
|
272 |
+
token_mixers = [token_mixers] * num_stage
|
273 |
+
if not isinstance(mlp_ratios, (list, tuple)):
|
274 |
+
mlp_ratios = [mlp_ratios] * num_stage
|
275 |
+
self.num_classes = num_classes
|
276 |
+
self.global_pool = global_pool
|
277 |
+
self.drop_rate = drop_rate
|
278 |
+
self.feature_info = []
|
279 |
+
|
280 |
+
self.stem = nn.Sequential(
|
281 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
282 |
+
norm_layer(dims[0])
|
283 |
+
)
|
284 |
+
|
285 |
+
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
286 |
+
prev_chs = dims[0]
|
287 |
+
curr_stride = 4
|
288 |
+
dilation = 1
|
289 |
+
# feature resolution stages, each consisting of multiple residual blocks
|
290 |
+
self.stages = nn.Sequential()
|
291 |
+
for i in range(num_stage):
|
292 |
+
stride = 2 if curr_stride == 2 or i > 0 else 1
|
293 |
+
if curr_stride >= output_stride and stride > 1:
|
294 |
+
dilation *= stride
|
295 |
+
stride = 1
|
296 |
+
curr_stride *= stride
|
297 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
298 |
+
out_chs = dims[i]
|
299 |
+
self.stages.append(MetaNeXtStage(
|
300 |
+
prev_chs,
|
301 |
+
out_chs,
|
302 |
+
stride=stride if i > 0 else 1,
|
303 |
+
dilation=(first_dilation, dilation),
|
304 |
+
depth=depths[i],
|
305 |
+
drop_path_rates=dp_rates[i],
|
306 |
+
ls_init_value=ls_init_value,
|
307 |
+
act_layer=act_layer,
|
308 |
+
token_mixer=token_mixers[i],
|
309 |
+
norm_layer=norm_layer,
|
310 |
+
mlp_ratio=mlp_ratios[i],
|
311 |
+
))
|
312 |
+
prev_chs = out_chs
|
313 |
+
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
|
314 |
+
self.num_features = prev_chs
|
315 |
+
self.head = MlpClassifierHead(self.num_features, num_classes, pool_type=self.global_pool, drop=drop_rate)
|
316 |
+
self.head_hidden_size = self.head.num_features
|
317 |
+
self.apply(self._init_weights)
|
318 |
+
|
319 |
+
def _init_weights(self, m):
|
320 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
321 |
+
trunc_normal_(m.weight, std=.02)
|
322 |
+
if m.bias is not None:
|
323 |
+
nn.init.constant_(m.bias, 0)
|
324 |
+
|
325 |
+
@torch.jit.ignore
|
326 |
+
def group_matcher(self, coarse=False):
|
327 |
+
return dict(
|
328 |
+
stem=r'^stem',
|
329 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
330 |
+
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
|
331 |
+
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
332 |
+
]
|
333 |
+
)
|
334 |
+
|
335 |
+
@torch.jit.ignore
|
336 |
+
def get_classifier(self) -> nn.Module:
|
337 |
+
return self.head.fc2
|
338 |
+
|
339 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
340 |
+
self.num_classes = num_classes
|
341 |
+
self.head.reset(num_classes, global_pool)
|
342 |
+
|
343 |
+
@torch.jit.ignore
|
344 |
+
def set_grad_checkpointing(self, enable=True):
|
345 |
+
for s in self.stages:
|
346 |
+
s.grad_checkpointing = enable
|
347 |
+
|
348 |
+
@torch.jit.ignore
|
349 |
+
def no_weight_decay(self):
|
350 |
+
return set()
|
351 |
+
|
352 |
+
def forward_features(self, x):
|
353 |
+
x = self.stem(x)
|
354 |
+
x = self.stages(x)
|
355 |
+
return x
|
356 |
+
|
357 |
+
def forward_head(self, x, pre_logits: bool = False):
|
358 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
359 |
+
|
360 |
+
def forward(self, x):
|
361 |
+
x = self.forward_features(x)
|
362 |
+
x = self.forward_head(x)
|
363 |
+
return x
|
364 |
+
|
365 |
+
|
366 |
+
def _cfg(url='', **kwargs):
|
367 |
+
return {
|
368 |
+
'url': url,
|
369 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
370 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
371 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
372 |
+
'first_conv': 'stem.0', 'classifier': 'head.fc2',
|
373 |
+
**kwargs
|
374 |
+
}
|
375 |
+
|
376 |
+
|
377 |
+
default_cfgs = generate_default_cfgs({
|
378 |
+
'inception_next_atto.sail_in1k': _cfg(
|
379 |
+
hf_hub_id='timm/',
|
380 |
+
# url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_atto.pth',
|
381 |
+
),
|
382 |
+
'inception_next_tiny.sail_in1k': _cfg(
|
383 |
+
hf_hub_id='timm/',
|
384 |
+
# url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
|
385 |
+
),
|
386 |
+
'inception_next_small.sail_in1k': _cfg(
|
387 |
+
hf_hub_id='timm/',
|
388 |
+
# url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
|
389 |
+
),
|
390 |
+
'inception_next_base.sail_in1k': _cfg(
|
391 |
+
hf_hub_id='timm/',
|
392 |
+
# url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
|
393 |
+
crop_pct=0.95,
|
394 |
+
),
|
395 |
+
'inception_next_base.sail_in1k_384': _cfg(
|
396 |
+
hf_hub_id='timm/',
|
397 |
+
# url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
|
398 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
|
399 |
+
),
|
400 |
+
})
|
401 |
+
|
402 |
+
|
403 |
+
def _create_inception_next(variant, pretrained=False, **kwargs):
|
404 |
+
model = build_model_with_cfg(
|
405 |
+
MetaNeXt, variant, pretrained,
|
406 |
+
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
407 |
+
**kwargs,
|
408 |
+
)
|
409 |
+
return model
|
410 |
+
|
411 |
+
|
412 |
+
@register_model
|
413 |
+
def inception_next_atto(pretrained=False, **kwargs):
|
414 |
+
model_args = dict(
|
415 |
+
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320),
|
416 |
+
token_mixers=partial(InceptionDWConv2d, band_kernel_size=9, branch_ratio=0.25)
|
417 |
+
)
|
418 |
+
return _create_inception_next('inception_next_atto', pretrained=pretrained, **dict(model_args, **kwargs))
|
419 |
+
|
420 |
+
|
421 |
+
@register_model
|
422 |
+
def inception_next_tiny(pretrained=False, **kwargs):
|
423 |
+
model_args = dict(
|
424 |
+
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),
|
425 |
+
token_mixers=InceptionDWConv2d,
|
426 |
+
)
|
427 |
+
return _create_inception_next('inception_next_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
|
428 |
+
|
429 |
+
|
430 |
+
@register_model
|
431 |
+
def inception_next_small(pretrained=False, **kwargs):
|
432 |
+
model_args = dict(
|
433 |
+
depths=(3, 3, 27, 3), dims=(96, 192, 384, 768),
|
434 |
+
token_mixers=InceptionDWConv2d,
|
435 |
+
)
|
436 |
+
return _create_inception_next('inception_next_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
437 |
+
|
438 |
+
|
439 |
+
@register_model
|
440 |
+
def inception_next_base(pretrained=False, **kwargs):
|
441 |
+
model_args = dict(
|
442 |
+
depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024),
|
443 |
+
token_mixers=InceptionDWConv2d,
|
444 |
+
)
|
445 |
+
return _create_inception_next('inception_next_base', pretrained=pretrained, **dict(model_args, **kwargs))
|
pytorch-image-models/timm/models/inception_resnet_v2.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Pytorch Inception-Resnet-V2 implementation
|
2 |
+
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
3 |
+
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
4 |
+
"""
|
5 |
+
from functools import partial
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
11 |
+
from timm.layers import create_classifier, ConvNormAct
|
12 |
+
from ._builder import build_model_with_cfg
|
13 |
+
from ._manipulate import flatten_modules
|
14 |
+
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
15 |
+
|
16 |
+
__all__ = ['InceptionResnetV2']
|
17 |
+
|
18 |
+
|
19 |
+
class Mixed_5b(nn.Module):
|
20 |
+
def __init__(self, conv_block=None):
|
21 |
+
super(Mixed_5b, self).__init__()
|
22 |
+
conv_block = conv_block or ConvNormAct
|
23 |
+
|
24 |
+
self.branch0 = conv_block(192, 96, kernel_size=1, stride=1)
|
25 |
+
|
26 |
+
self.branch1 = nn.Sequential(
|
27 |
+
conv_block(192, 48, kernel_size=1, stride=1),
|
28 |
+
conv_block(48, 64, kernel_size=5, stride=1, padding=2)
|
29 |
+
)
|
30 |
+
|
31 |
+
self.branch2 = nn.Sequential(
|
32 |
+
conv_block(192, 64, kernel_size=1, stride=1),
|
33 |
+
conv_block(64, 96, kernel_size=3, stride=1, padding=1),
|
34 |
+
conv_block(96, 96, kernel_size=3, stride=1, padding=1)
|
35 |
+
)
|
36 |
+
|
37 |
+
self.branch3 = nn.Sequential(
|
38 |
+
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
39 |
+
conv_block(192, 64, kernel_size=1, stride=1)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x0 = self.branch0(x)
|
44 |
+
x1 = self.branch1(x)
|
45 |
+
x2 = self.branch2(x)
|
46 |
+
x3 = self.branch3(x)
|
47 |
+
out = torch.cat((x0, x1, x2, x3), 1)
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
class Block35(nn.Module):
|
52 |
+
def __init__(self, scale=1.0, conv_block=None):
|
53 |
+
super(Block35, self).__init__()
|
54 |
+
self.scale = scale
|
55 |
+
conv_block = conv_block or ConvNormAct
|
56 |
+
|
57 |
+
self.branch0 = conv_block(320, 32, kernel_size=1, stride=1)
|
58 |
+
|
59 |
+
self.branch1 = nn.Sequential(
|
60 |
+
conv_block(320, 32, kernel_size=1, stride=1),
|
61 |
+
conv_block(32, 32, kernel_size=3, stride=1, padding=1)
|
62 |
+
)
|
63 |
+
|
64 |
+
self.branch2 = nn.Sequential(
|
65 |
+
conv_block(320, 32, kernel_size=1, stride=1),
|
66 |
+
conv_block(32, 48, kernel_size=3, stride=1, padding=1),
|
67 |
+
conv_block(48, 64, kernel_size=3, stride=1, padding=1)
|
68 |
+
)
|
69 |
+
|
70 |
+
self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1)
|
71 |
+
self.act = nn.ReLU()
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x0 = self.branch0(x)
|
75 |
+
x1 = self.branch1(x)
|
76 |
+
x2 = self.branch2(x)
|
77 |
+
out = torch.cat((x0, x1, x2), 1)
|
78 |
+
out = self.conv2d(out)
|
79 |
+
out = out * self.scale + x
|
80 |
+
out = self.act(out)
|
81 |
+
return out
|
82 |
+
|
83 |
+
|
84 |
+
class Mixed_6a(nn.Module):
|
85 |
+
def __init__(self, conv_block=None):
|
86 |
+
super(Mixed_6a, self).__init__()
|
87 |
+
conv_block = conv_block or ConvNormAct
|
88 |
+
|
89 |
+
self.branch0 = conv_block(320, 384, kernel_size=3, stride=2)
|
90 |
+
|
91 |
+
self.branch1 = nn.Sequential(
|
92 |
+
conv_block(320, 256, kernel_size=1, stride=1),
|
93 |
+
conv_block(256, 256, kernel_size=3, stride=1, padding=1),
|
94 |
+
conv_block(256, 384, kernel_size=3, stride=2)
|
95 |
+
)
|
96 |
+
|
97 |
+
self.branch2 = nn.MaxPool2d(3, stride=2)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x0 = self.branch0(x)
|
101 |
+
x1 = self.branch1(x)
|
102 |
+
x2 = self.branch2(x)
|
103 |
+
out = torch.cat((x0, x1, x2), 1)
|
104 |
+
return out
|
105 |
+
|
106 |
+
|
107 |
+
class Block17(nn.Module):
|
108 |
+
def __init__(self, scale=1.0, conv_block=None):
|
109 |
+
super(Block17, self).__init__()
|
110 |
+
self.scale = scale
|
111 |
+
conv_block = conv_block or ConvNormAct
|
112 |
+
|
113 |
+
self.branch0 = conv_block(1088, 192, kernel_size=1, stride=1)
|
114 |
+
|
115 |
+
self.branch1 = nn.Sequential(
|
116 |
+
conv_block(1088, 128, kernel_size=1, stride=1),
|
117 |
+
conv_block(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
118 |
+
conv_block(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
119 |
+
)
|
120 |
+
|
121 |
+
self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1)
|
122 |
+
self.act = nn.ReLU()
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
x0 = self.branch0(x)
|
126 |
+
x1 = self.branch1(x)
|
127 |
+
out = torch.cat((x0, x1), 1)
|
128 |
+
out = self.conv2d(out)
|
129 |
+
out = out * self.scale + x
|
130 |
+
out = self.act(out)
|
131 |
+
return out
|
132 |
+
|
133 |
+
|
134 |
+
class Mixed_7a(nn.Module):
|
135 |
+
def __init__(self, conv_block=None):
|
136 |
+
super(Mixed_7a, self).__init__()
|
137 |
+
conv_block = conv_block or ConvNormAct
|
138 |
+
|
139 |
+
self.branch0 = nn.Sequential(
|
140 |
+
conv_block(1088, 256, kernel_size=1, stride=1),
|
141 |
+
conv_block(256, 384, kernel_size=3, stride=2)
|
142 |
+
)
|
143 |
+
|
144 |
+
self.branch1 = nn.Sequential(
|
145 |
+
conv_block(1088, 256, kernel_size=1, stride=1),
|
146 |
+
conv_block(256, 288, kernel_size=3, stride=2)
|
147 |
+
)
|
148 |
+
|
149 |
+
self.branch2 = nn.Sequential(
|
150 |
+
conv_block(1088, 256, kernel_size=1, stride=1),
|
151 |
+
conv_block(256, 288, kernel_size=3, stride=1, padding=1),
|
152 |
+
conv_block(288, 320, kernel_size=3, stride=2)
|
153 |
+
)
|
154 |
+
|
155 |
+
self.branch3 = nn.MaxPool2d(3, stride=2)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
x0 = self.branch0(x)
|
159 |
+
x1 = self.branch1(x)
|
160 |
+
x2 = self.branch2(x)
|
161 |
+
x3 = self.branch3(x)
|
162 |
+
out = torch.cat((x0, x1, x2, x3), 1)
|
163 |
+
return out
|
164 |
+
|
165 |
+
|
166 |
+
class Block8(nn.Module):
|
167 |
+
|
168 |
+
def __init__(self, scale=1.0, no_relu=False, conv_block=None):
|
169 |
+
super(Block8, self).__init__()
|
170 |
+
self.scale = scale
|
171 |
+
conv_block = conv_block or ConvNormAct
|
172 |
+
|
173 |
+
self.branch0 = conv_block(2080, 192, kernel_size=1, stride=1)
|
174 |
+
|
175 |
+
self.branch1 = nn.Sequential(
|
176 |
+
conv_block(2080, 192, kernel_size=1, stride=1),
|
177 |
+
conv_block(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)),
|
178 |
+
conv_block(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
179 |
+
)
|
180 |
+
|
181 |
+
self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1)
|
182 |
+
self.relu = None if no_relu else nn.ReLU()
|
183 |
+
|
184 |
+
def forward(self, x):
|
185 |
+
x0 = self.branch0(x)
|
186 |
+
x1 = self.branch1(x)
|
187 |
+
out = torch.cat((x0, x1), 1)
|
188 |
+
out = self.conv2d(out)
|
189 |
+
out = out * self.scale + x
|
190 |
+
if self.relu is not None:
|
191 |
+
out = self.relu(out)
|
192 |
+
return out
|
193 |
+
|
194 |
+
|
195 |
+
class InceptionResnetV2(nn.Module):
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
num_classes=1000,
|
199 |
+
in_chans=3,
|
200 |
+
drop_rate=0.,
|
201 |
+
output_stride=32,
|
202 |
+
global_pool='avg',
|
203 |
+
norm_layer='batchnorm2d',
|
204 |
+
norm_eps=1e-3,
|
205 |
+
act_layer='relu',
|
206 |
+
):
|
207 |
+
super(InceptionResnetV2, self).__init__()
|
208 |
+
self.num_classes = num_classes
|
209 |
+
self.num_features = self.head_hidden_size = 1536
|
210 |
+
assert output_stride == 32
|
211 |
+
conv_block = partial(
|
212 |
+
ConvNormAct,
|
213 |
+
padding=0,
|
214 |
+
norm_layer=norm_layer,
|
215 |
+
act_layer=act_layer,
|
216 |
+
norm_kwargs=dict(eps=norm_eps),
|
217 |
+
act_kwargs=dict(inplace=True),
|
218 |
+
)
|
219 |
+
|
220 |
+
self.conv2d_1a = conv_block(in_chans, 32, kernel_size=3, stride=2)
|
221 |
+
self.conv2d_2a = conv_block(32, 32, kernel_size=3, stride=1)
|
222 |
+
self.conv2d_2b = conv_block(32, 64, kernel_size=3, stride=1, padding=1)
|
223 |
+
self.feature_info = [dict(num_chs=64, reduction=2, module='conv2d_2b')]
|
224 |
+
|
225 |
+
self.maxpool_3a = nn.MaxPool2d(3, stride=2)
|
226 |
+
self.conv2d_3b = conv_block(64, 80, kernel_size=1, stride=1)
|
227 |
+
self.conv2d_4a = conv_block(80, 192, kernel_size=3, stride=1)
|
228 |
+
self.feature_info += [dict(num_chs=192, reduction=4, module='conv2d_4a')]
|
229 |
+
|
230 |
+
self.maxpool_5a = nn.MaxPool2d(3, stride=2)
|
231 |
+
self.mixed_5b = Mixed_5b(conv_block=conv_block)
|
232 |
+
self.repeat = nn.Sequential(*[Block35(scale=0.17, conv_block=conv_block) for _ in range(10)])
|
233 |
+
self.feature_info += [dict(num_chs=320, reduction=8, module='repeat')]
|
234 |
+
|
235 |
+
self.mixed_6a = Mixed_6a(conv_block=conv_block)
|
236 |
+
self.repeat_1 = nn.Sequential(*[Block17(scale=0.10, conv_block=conv_block) for _ in range(20)])
|
237 |
+
self.feature_info += [dict(num_chs=1088, reduction=16, module='repeat_1')]
|
238 |
+
|
239 |
+
self.mixed_7a = Mixed_7a(conv_block=conv_block)
|
240 |
+
self.repeat_2 = nn.Sequential(*[Block8(scale=0.20, conv_block=conv_block) for _ in range(9)])
|
241 |
+
|
242 |
+
self.block8 = Block8(no_relu=True, conv_block=conv_block)
|
243 |
+
self.conv2d_7b = conv_block(2080, self.num_features, kernel_size=1, stride=1)
|
244 |
+
self.feature_info += [dict(num_chs=self.num_features, reduction=32, module='conv2d_7b')]
|
245 |
+
|
246 |
+
self.global_pool, self.head_drop, self.classif = create_classifier(
|
247 |
+
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
248 |
+
|
249 |
+
@torch.jit.ignore
|
250 |
+
def group_matcher(self, coarse=False):
|
251 |
+
module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))}
|
252 |
+
module_map.pop(('classif',))
|
253 |
+
|
254 |
+
def _matcher(name):
|
255 |
+
if any([name.startswith(n) for n in ('conv2d_1', 'conv2d_2')]):
|
256 |
+
return 0
|
257 |
+
elif any([name.startswith(n) for n in ('conv2d_3', 'conv2d_4')]):
|
258 |
+
return 1
|
259 |
+
elif any([name.startswith(n) for n in ('block8', 'conv2d_7')]):
|
260 |
+
return len(module_map) + 1
|
261 |
+
else:
|
262 |
+
for k in module_map.keys():
|
263 |
+
if k == tuple(name.split('.')[:len(k)]):
|
264 |
+
return module_map[k]
|
265 |
+
return float('inf')
|
266 |
+
return _matcher
|
267 |
+
|
268 |
+
@torch.jit.ignore
|
269 |
+
def set_grad_checkpointing(self, enable=True):
|
270 |
+
assert not enable, "checkpointing not supported"
|
271 |
+
|
272 |
+
@torch.jit.ignore
|
273 |
+
def get_classifier(self) -> nn.Module:
|
274 |
+
return self.classif
|
275 |
+
|
276 |
+
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
277 |
+
self.num_classes = num_classes
|
278 |
+
self.global_pool, self.classif = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
279 |
+
|
280 |
+
def forward_features(self, x):
|
281 |
+
x = self.conv2d_1a(x)
|
282 |
+
x = self.conv2d_2a(x)
|
283 |
+
x = self.conv2d_2b(x)
|
284 |
+
x = self.maxpool_3a(x)
|
285 |
+
x = self.conv2d_3b(x)
|
286 |
+
x = self.conv2d_4a(x)
|
287 |
+
x = self.maxpool_5a(x)
|
288 |
+
x = self.mixed_5b(x)
|
289 |
+
x = self.repeat(x)
|
290 |
+
x = self.mixed_6a(x)
|
291 |
+
x = self.repeat_1(x)
|
292 |
+
x = self.mixed_7a(x)
|
293 |
+
x = self.repeat_2(x)
|
294 |
+
x = self.block8(x)
|
295 |
+
x = self.conv2d_7b(x)
|
296 |
+
return x
|
297 |
+
|
298 |
+
def forward_head(self, x, pre_logits: bool = False):
|
299 |
+
x = self.global_pool(x)
|
300 |
+
x = self.head_drop(x)
|
301 |
+
return x if pre_logits else self.classif(x)
|
302 |
+
|
303 |
+
def forward(self, x):
|
304 |
+
x = self.forward_features(x)
|
305 |
+
x = self.forward_head(x)
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
def _create_inception_resnet_v2(variant, pretrained=False, **kwargs):
|
310 |
+
return build_model_with_cfg(InceptionResnetV2, variant, pretrained, **kwargs)
|
311 |
+
|
312 |
+
|
313 |
+
default_cfgs = generate_default_cfgs({
|
314 |
+
# ported from http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
|
315 |
+
'inception_resnet_v2.tf_in1k': {
|
316 |
+
'hf_hub_id': 'timm/',
|
317 |
+
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
318 |
+
'crop_pct': 0.8975, 'interpolation': 'bicubic',
|
319 |
+
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
320 |
+
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif',
|
321 |
+
},
|
322 |
+
# As per https://arxiv.org/abs/1705.07204 and
|
323 |
+
# ported from http://download.tensorflow.org/models/ens_adv_inception_resnet_v2_2017_08_18.tar.gz
|
324 |
+
'inception_resnet_v2.tf_ens_adv_in1k': {
|
325 |
+
'hf_hub_id': 'timm/',
|
326 |
+
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
327 |
+
'crop_pct': 0.8975, 'interpolation': 'bicubic',
|
328 |
+
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
329 |
+
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif',
|
330 |
+
}
|
331 |
+
})
|
332 |
+
|
333 |
+
|
334 |
+
@register_model
|
335 |
+
def inception_resnet_v2(pretrained=False, **kwargs) -> InceptionResnetV2:
|
336 |
+
return _create_inception_resnet_v2('inception_resnet_v2', pretrained=pretrained, **kwargs)
|
337 |
+
|
338 |
+
|
339 |
+
register_model_deprecations(__name__, {
|
340 |
+
'ens_adv_inception_resnet_v2': 'inception_resnet_v2.tf_ens_adv_in1k',
|
341 |
+
})
|
pytorch-image-models/timm/models/inception_v3.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Inception-V3
|
2 |
+
|
3 |
+
Originally from torchvision Inception3 model
|
4 |
+
Licensed BSD-Clause 3 https://github.com/pytorch/vision/blob/master/LICENSE
|
5 |
+
"""
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
14 |
+
from timm.layers import trunc_normal_, create_classifier, Linear, ConvNormAct
|
15 |
+
from ._builder import build_model_with_cfg
|
16 |
+
from ._builder import resolve_pretrained_cfg
|
17 |
+
from ._manipulate import flatten_modules
|
18 |
+
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
19 |
+
|
20 |
+
__all__ = ['InceptionV3'] # model_registry will add each entrypoint fn to this
|
21 |
+
|
22 |
+
|
23 |
+
class InceptionA(nn.Module):
|
24 |
+
|
25 |
+
def __init__(self, in_channels, pool_features, conv_block=None):
|
26 |
+
super(InceptionA, self).__init__()
|
27 |
+
conv_block = conv_block or ConvNormAct
|
28 |
+
self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
|
29 |
+
|
30 |
+
self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
|
31 |
+
self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
|
32 |
+
|
33 |
+
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
|
34 |
+
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
|
35 |
+
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
|
36 |
+
|
37 |
+
self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
|
38 |
+
|
39 |
+
def _forward(self, x):
|
40 |
+
branch1x1 = self.branch1x1(x)
|
41 |
+
|
42 |
+
branch5x5 = self.branch5x5_1(x)
|
43 |
+
branch5x5 = self.branch5x5_2(branch5x5)
|
44 |
+
|
45 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
46 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
47 |
+
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
48 |
+
|
49 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
50 |
+
branch_pool = self.branch_pool(branch_pool)
|
51 |
+
|
52 |
+
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
53 |
+
return outputs
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
outputs = self._forward(x)
|
57 |
+
return torch.cat(outputs, 1)
|
58 |
+
|
59 |
+
|
60 |
+
class InceptionB(nn.Module):
|
61 |
+
|
62 |
+
def __init__(self, in_channels, conv_block=None):
|
63 |
+
super(InceptionB, self).__init__()
|
64 |
+
conv_block = conv_block or ConvNormAct
|
65 |
+
self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
|
66 |
+
|
67 |
+
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
|
68 |
+
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
|
69 |
+
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
|
70 |
+
|
71 |
+
def _forward(self, x):
|
72 |
+
branch3x3 = self.branch3x3(x)
|
73 |
+
|
74 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
75 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
76 |
+
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
77 |
+
|
78 |
+
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
|
79 |
+
|
80 |
+
outputs = [branch3x3, branch3x3dbl, branch_pool]
|
81 |
+
return outputs
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
outputs = self._forward(x)
|
85 |
+
return torch.cat(outputs, 1)
|
86 |
+
|
87 |
+
|
88 |
+
class InceptionC(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, in_channels, channels_7x7, conv_block=None):
|
91 |
+
super(InceptionC, self).__init__()
|
92 |
+
conv_block = conv_block or ConvNormAct
|
93 |
+
self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
|
94 |
+
|
95 |
+
c7 = channels_7x7
|
96 |
+
self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
|
97 |
+
self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
|
98 |
+
self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
|
99 |
+
|
100 |
+
self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
|
101 |
+
self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
|
102 |
+
self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
|
103 |
+
self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
|
104 |
+
self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
|
105 |
+
|
106 |
+
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
|
107 |
+
|
108 |
+
def _forward(self, x):
|
109 |
+
branch1x1 = self.branch1x1(x)
|
110 |
+
|
111 |
+
branch7x7 = self.branch7x7_1(x)
|
112 |
+
branch7x7 = self.branch7x7_2(branch7x7)
|
113 |
+
branch7x7 = self.branch7x7_3(branch7x7)
|
114 |
+
|
115 |
+
branch7x7dbl = self.branch7x7dbl_1(x)
|
116 |
+
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
117 |
+
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
118 |
+
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
119 |
+
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
120 |
+
|
121 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
122 |
+
branch_pool = self.branch_pool(branch_pool)
|
123 |
+
|
124 |
+
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
125 |
+
return outputs
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
outputs = self._forward(x)
|
129 |
+
return torch.cat(outputs, 1)
|
130 |
+
|
131 |
+
|
132 |
+
class InceptionD(nn.Module):
|
133 |
+
|
134 |
+
def __init__(self, in_channels, conv_block=None):
|
135 |
+
super(InceptionD, self).__init__()
|
136 |
+
conv_block = conv_block or ConvNormAct
|
137 |
+
self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
|
138 |
+
self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
|
139 |
+
|
140 |
+
self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
|
141 |
+
self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
|
142 |
+
self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
|
143 |
+
self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
|
144 |
+
|
145 |
+
def _forward(self, x):
|
146 |
+
branch3x3 = self.branch3x3_1(x)
|
147 |
+
branch3x3 = self.branch3x3_2(branch3x3)
|
148 |
+
|
149 |
+
branch7x7x3 = self.branch7x7x3_1(x)
|
150 |
+
branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
|
151 |
+
branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
|
152 |
+
branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
|
153 |
+
|
154 |
+
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
|
155 |
+
outputs = [branch3x3, branch7x7x3, branch_pool]
|
156 |
+
return outputs
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
outputs = self._forward(x)
|
160 |
+
return torch.cat(outputs, 1)
|
161 |
+
|
162 |
+
|
163 |
+
class InceptionE(nn.Module):
|
164 |
+
|
165 |
+
def __init__(self, in_channels, conv_block=None):
|
166 |
+
super(InceptionE, self).__init__()
|
167 |
+
conv_block = conv_block or ConvNormAct
|
168 |
+
self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
|
169 |
+
|
170 |
+
self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
|
171 |
+
self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
172 |
+
self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
173 |
+
|
174 |
+
self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
|
175 |
+
self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
|
176 |
+
self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
177 |
+
self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
178 |
+
|
179 |
+
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
|
180 |
+
|
181 |
+
def _forward(self, x):
|
182 |
+
branch1x1 = self.branch1x1(x)
|
183 |
+
|
184 |
+
branch3x3 = self.branch3x3_1(x)
|
185 |
+
branch3x3 = [
|
186 |
+
self.branch3x3_2a(branch3x3),
|
187 |
+
self.branch3x3_2b(branch3x3),
|
188 |
+
]
|
189 |
+
branch3x3 = torch.cat(branch3x3, 1)
|
190 |
+
|
191 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
192 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
193 |
+
branch3x3dbl = [
|
194 |
+
self.branch3x3dbl_3a(branch3x3dbl),
|
195 |
+
self.branch3x3dbl_3b(branch3x3dbl),
|
196 |
+
]
|
197 |
+
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
198 |
+
|
199 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
200 |
+
branch_pool = self.branch_pool(branch_pool)
|
201 |
+
|
202 |
+
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
203 |
+
return outputs
|
204 |
+
|
205 |
+
def forward(self, x):
|
206 |
+
outputs = self._forward(x)
|
207 |
+
return torch.cat(outputs, 1)
|
208 |
+
|
209 |
+
|
210 |
+
class InceptionAux(nn.Module):
|
211 |
+
|
212 |
+
def __init__(self, in_channels, num_classes, conv_block=None):
|
213 |
+
super(InceptionAux, self).__init__()
|
214 |
+
conv_block = conv_block or ConvNormAct
|
215 |
+
self.conv0 = conv_block(in_channels, 128, kernel_size=1)
|
216 |
+
self.conv1 = conv_block(128, 768, kernel_size=5)
|
217 |
+
self.conv1.stddev = 0.01
|
218 |
+
self.fc = Linear(768, num_classes)
|
219 |
+
self.fc.stddev = 0.001
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
# N x 768 x 17 x 17
|
223 |
+
x = F.avg_pool2d(x, kernel_size=5, stride=3)
|
224 |
+
# N x 768 x 5 x 5
|
225 |
+
x = self.conv0(x)
|
226 |
+
# N x 128 x 5 x 5
|
227 |
+
x = self.conv1(x)
|
228 |
+
# N x 768 x 1 x 1
|
229 |
+
# Adaptive average pooling
|
230 |
+
x = F.adaptive_avg_pool2d(x, (1, 1))
|
231 |
+
# N x 768 x 1 x 1
|
232 |
+
x = torch.flatten(x, 1)
|
233 |
+
# N x 768
|
234 |
+
x = self.fc(x)
|
235 |
+
# N x 1000
|
236 |
+
return x
|
237 |
+
|
238 |
+
|
239 |
+
class InceptionV3(nn.Module):
|
240 |
+
"""Inception-V3
|
241 |
+
"""
|
242 |
+
aux_logits: torch.jit.Final[bool]
|
243 |
+
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
num_classes=1000,
|
247 |
+
in_chans=3,
|
248 |
+
drop_rate=0.,
|
249 |
+
global_pool='avg',
|
250 |
+
aux_logits=False,
|
251 |
+
norm_layer='batchnorm2d',
|
252 |
+
norm_eps=1e-3,
|
253 |
+
act_layer='relu',
|
254 |
+
):
|
255 |
+
super(InceptionV3, self).__init__()
|
256 |
+
self.num_classes = num_classes
|
257 |
+
self.aux_logits = aux_logits
|
258 |
+
conv_block = partial(
|
259 |
+
ConvNormAct,
|
260 |
+
padding=0,
|
261 |
+
norm_layer=norm_layer,
|
262 |
+
act_layer=act_layer,
|
263 |
+
norm_kwargs=dict(eps=norm_eps),
|
264 |
+
act_kwargs=dict(inplace=True),
|
265 |
+
)
|
266 |
+
|
267 |
+
self.Conv2d_1a_3x3 = conv_block(in_chans, 32, kernel_size=3, stride=2)
|
268 |
+
self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
|
269 |
+
self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
|
270 |
+
self.Pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
|
271 |
+
self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
|
272 |
+
self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
|
273 |
+
self.Pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
|
274 |
+
self.Mixed_5b = InceptionA(192, pool_features=32, conv_block=conv_block)
|
275 |
+
self.Mixed_5c = InceptionA(256, pool_features=64, conv_block=conv_block)
|
276 |
+
self.Mixed_5d = InceptionA(288, pool_features=64, conv_block=conv_block)
|
277 |
+
self.Mixed_6a = InceptionB(288, conv_block=conv_block)
|
278 |
+
self.Mixed_6b = InceptionC(768, channels_7x7=128, conv_block=conv_block)
|
279 |
+
self.Mixed_6c = InceptionC(768, channels_7x7=160, conv_block=conv_block)
|
280 |
+
self.Mixed_6d = InceptionC(768, channels_7x7=160, conv_block=conv_block)
|
281 |
+
self.Mixed_6e = InceptionC(768, channels_7x7=192, conv_block=conv_block)
|
282 |
+
if aux_logits:
|
283 |
+
self.AuxLogits = InceptionAux(768, num_classes, conv_block=conv_block)
|
284 |
+
else:
|
285 |
+
self.AuxLogits = None
|
286 |
+
self.Mixed_7a = InceptionD(768, conv_block=conv_block)
|
287 |
+
self.Mixed_7b = InceptionE(1280, conv_block=conv_block)
|
288 |
+
self.Mixed_7c = InceptionE(2048, conv_block=conv_block)
|
289 |
+
self.feature_info = [
|
290 |
+
dict(num_chs=64, reduction=2, module='Conv2d_2b_3x3'),
|
291 |
+
dict(num_chs=192, reduction=4, module='Conv2d_4a_3x3'),
|
292 |
+
dict(num_chs=288, reduction=8, module='Mixed_5d'),
|
293 |
+
dict(num_chs=768, reduction=16, module='Mixed_6e'),
|
294 |
+
dict(num_chs=2048, reduction=32, module='Mixed_7c'),
|
295 |
+
]
|
296 |
+
|
297 |
+
self.num_features = self.head_hidden_size = 2048
|
298 |
+
self.global_pool, self.head_drop, self.fc = create_classifier(
|
299 |
+
self.num_features,
|
300 |
+
self.num_classes,
|
301 |
+
pool_type=global_pool,
|
302 |
+
drop_rate=drop_rate,
|
303 |
+
)
|
304 |
+
|
305 |
+
for m in self.modules():
|
306 |
+
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
|
307 |
+
stddev = m.stddev if hasattr(m, 'stddev') else 0.1
|
308 |
+
trunc_normal_(m.weight, std=stddev)
|
309 |
+
elif isinstance(m, nn.BatchNorm2d):
|
310 |
+
nn.init.constant_(m.weight, 1)
|
311 |
+
nn.init.constant_(m.bias, 0)
|
312 |
+
|
313 |
+
@torch.jit.ignore
|
314 |
+
def group_matcher(self, coarse=False):
|
315 |
+
module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))}
|
316 |
+
module_map.pop(('fc',))
|
317 |
+
|
318 |
+
def _matcher(name):
|
319 |
+
if any([name.startswith(n) for n in ('Conv2d_1', 'Conv2d_2')]):
|
320 |
+
return 0
|
321 |
+
elif any([name.startswith(n) for n in ('Conv2d_3', 'Conv2d_4')]):
|
322 |
+
return 1
|
323 |
+
else:
|
324 |
+
for k in module_map.keys():
|
325 |
+
if k == tuple(name.split('.')[:len(k)]):
|
326 |
+
return module_map[k]
|
327 |
+
return float('inf')
|
328 |
+
return _matcher
|
329 |
+
|
330 |
+
@torch.jit.ignore
|
331 |
+
def set_grad_checkpointing(self, enable=True):
|
332 |
+
assert not enable, 'gradient checkpointing not supported'
|
333 |
+
|
334 |
+
@torch.jit.ignore
|
335 |
+
def get_classifier(self) -> nn.Module:
|
336 |
+
return self.fc
|
337 |
+
|
338 |
+
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
339 |
+
self.num_classes = num_classes
|
340 |
+
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
341 |
+
|
342 |
+
def forward_preaux(self, x):
|
343 |
+
x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149
|
344 |
+
x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147
|
345 |
+
x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147
|
346 |
+
x = self.Pool1(x) # N x 64 x 73 x 73
|
347 |
+
x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73
|
348 |
+
x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71
|
349 |
+
x = self.Pool2(x) # N x 192 x 35 x 35
|
350 |
+
x = self.Mixed_5b(x) # N x 256 x 35 x 35
|
351 |
+
x = self.Mixed_5c(x) # N x 288 x 35 x 35
|
352 |
+
x = self.Mixed_5d(x) # N x 288 x 35 x 35
|
353 |
+
x = self.Mixed_6a(x) # N x 768 x 17 x 17
|
354 |
+
x = self.Mixed_6b(x) # N x 768 x 17 x 17
|
355 |
+
x = self.Mixed_6c(x) # N x 768 x 17 x 17
|
356 |
+
x = self.Mixed_6d(x) # N x 768 x 17 x 17
|
357 |
+
x = self.Mixed_6e(x) # N x 768 x 17 x 17
|
358 |
+
return x
|
359 |
+
|
360 |
+
def forward_postaux(self, x):
|
361 |
+
x = self.Mixed_7a(x) # N x 1280 x 8 x 8
|
362 |
+
x = self.Mixed_7b(x) # N x 2048 x 8 x 8
|
363 |
+
x = self.Mixed_7c(x) # N x 2048 x 8 x 8
|
364 |
+
return x
|
365 |
+
|
366 |
+
def forward_features(self, x):
|
367 |
+
x = self.forward_preaux(x)
|
368 |
+
if self.aux_logits:
|
369 |
+
aux = self.AuxLogits(x)
|
370 |
+
x = self.forward_postaux(x)
|
371 |
+
return x, aux
|
372 |
+
x = self.forward_postaux(x)
|
373 |
+
return x
|
374 |
+
|
375 |
+
def forward_head(self, x, pre_logits: bool = False):
|
376 |
+
x = self.global_pool(x)
|
377 |
+
x = self.head_drop(x)
|
378 |
+
if pre_logits:
|
379 |
+
return x
|
380 |
+
x = self.fc(x)
|
381 |
+
return x
|
382 |
+
|
383 |
+
def forward(self, x):
|
384 |
+
if self.aux_logits:
|
385 |
+
x, aux = self.forward_features(x)
|
386 |
+
x = self.forward_head(x)
|
387 |
+
return x, aux
|
388 |
+
x = self.forward_features(x)
|
389 |
+
x = self.forward_head(x)
|
390 |
+
return x
|
391 |
+
|
392 |
+
|
393 |
+
def _create_inception_v3(variant, pretrained=False, **kwargs):
|
394 |
+
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None))
|
395 |
+
aux_logits = kwargs.get('aux_logits', False)
|
396 |
+
has_aux_logits = False
|
397 |
+
if pretrained_cfg:
|
398 |
+
# only torchvision pretrained weights have aux logits
|
399 |
+
has_aux_logits = pretrained_cfg.tag == 'tv_in1k'
|
400 |
+
if aux_logits:
|
401 |
+
assert not kwargs.pop('features_only', False)
|
402 |
+
load_strict = has_aux_logits
|
403 |
+
else:
|
404 |
+
load_strict = not has_aux_logits
|
405 |
+
|
406 |
+
return build_model_with_cfg(
|
407 |
+
InceptionV3,
|
408 |
+
variant,
|
409 |
+
pretrained,
|
410 |
+
pretrained_cfg=pretrained_cfg,
|
411 |
+
pretrained_strict=load_strict,
|
412 |
+
**kwargs,
|
413 |
+
)
|
414 |
+
|
415 |
+
|
416 |
+
def _cfg(url='', **kwargs):
|
417 |
+
return {
|
418 |
+
'url': url,
|
419 |
+
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
420 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
421 |
+
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
422 |
+
'first_conv': 'Conv2d_1a_3x3.conv', 'classifier': 'fc',
|
423 |
+
**kwargs
|
424 |
+
}
|
425 |
+
|
426 |
+
|
427 |
+
default_cfgs = generate_default_cfgs({
|
428 |
+
# original PyTorch weights, ported from Tensorflow but modified
|
429 |
+
'inception_v3.tv_in1k': _cfg(
|
430 |
+
# NOTE checkpoint has aux logit layer weights
|
431 |
+
hf_hub_id='timm/',
|
432 |
+
url='https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth'),
|
433 |
+
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
|
434 |
+
'inception_v3.tf_in1k': _cfg(hf_hub_id='timm/'),
|
435 |
+
# my port of Tensorflow adversarially trained Inception V3 from
|
436 |
+
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
|
437 |
+
'inception_v3.tf_adv_in1k': _cfg(hf_hub_id='timm/'),
|
438 |
+
# from gluon pretrained models, best performing in terms of accuracy/loss metrics
|
439 |
+
# https://gluon-cv.mxnet.io/model_zoo/classification.html
|
440 |
+
'inception_v3.gluon_in1k': _cfg(
|
441 |
+
hf_hub_id='timm/',
|
442 |
+
mean=IMAGENET_DEFAULT_MEAN, # also works well with inception defaults
|
443 |
+
std=IMAGENET_DEFAULT_STD, # also works well with inception defaults
|
444 |
+
)
|
445 |
+
})
|
446 |
+
|
447 |
+
|
448 |
+
@register_model
|
449 |
+
def inception_v3(pretrained=False, **kwargs) -> InceptionV3:
|
450 |
+
model = _create_inception_v3('inception_v3', pretrained=pretrained, **kwargs)
|
451 |
+
return model
|
452 |
+
|
453 |
+
|
454 |
+
register_model_deprecations(__name__, {
|
455 |
+
'tf_inception_v3': 'inception_v3.tf_in1k',
|
456 |
+
'adv_inception_v3': 'inception_v3.tf_adv_in1k',
|
457 |
+
'gluon_inception_v3': 'inception_v3.gluon_in1k',
|
458 |
+
})
|
pytorch-image-models/timm/models/inception_v4.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Pytorch Inception-V4 implementation
|
2 |
+
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
3 |
+
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
4 |
+
"""
|
5 |
+
from functools import partial
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
11 |
+
from timm.layers import create_classifier, ConvNormAct
|
12 |
+
from ._builder import build_model_with_cfg
|
13 |
+
from ._registry import register_model, generate_default_cfgs
|
14 |
+
|
15 |
+
__all__ = ['InceptionV4']
|
16 |
+
|
17 |
+
|
18 |
+
class Mixed3a(nn.Module):
|
19 |
+
def __init__(self, conv_block=ConvNormAct):
|
20 |
+
super(Mixed3a, self).__init__()
|
21 |
+
self.maxpool = nn.MaxPool2d(3, stride=2)
|
22 |
+
self.conv = conv_block(64, 96, kernel_size=3, stride=2)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
x0 = self.maxpool(x)
|
26 |
+
x1 = self.conv(x)
|
27 |
+
out = torch.cat((x0, x1), 1)
|
28 |
+
return out
|
29 |
+
|
30 |
+
|
31 |
+
class Mixed4a(nn.Module):
|
32 |
+
def __init__(self, conv_block=ConvNormAct):
|
33 |
+
super(Mixed4a, self).__init__()
|
34 |
+
|
35 |
+
self.branch0 = nn.Sequential(
|
36 |
+
conv_block(160, 64, kernel_size=1, stride=1),
|
37 |
+
conv_block(64, 96, kernel_size=3, stride=1)
|
38 |
+
)
|
39 |
+
|
40 |
+
self.branch1 = nn.Sequential(
|
41 |
+
conv_block(160, 64, kernel_size=1, stride=1),
|
42 |
+
conv_block(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
43 |
+
conv_block(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
44 |
+
conv_block(64, 96, kernel_size=(3, 3), stride=1)
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
x0 = self.branch0(x)
|
49 |
+
x1 = self.branch1(x)
|
50 |
+
out = torch.cat((x0, x1), 1)
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class Mixed5a(nn.Module):
|
55 |
+
def __init__(self, conv_block=ConvNormAct):
|
56 |
+
super(Mixed5a, self).__init__()
|
57 |
+
self.conv = conv_block(192, 192, kernel_size=3, stride=2)
|
58 |
+
self.maxpool = nn.MaxPool2d(3, stride=2)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x0 = self.conv(x)
|
62 |
+
x1 = self.maxpool(x)
|
63 |
+
out = torch.cat((x0, x1), 1)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
class InceptionA(nn.Module):
|
68 |
+
def __init__(self, conv_block=ConvNormAct):
|
69 |
+
super(InceptionA, self).__init__()
|
70 |
+
self.branch0 = conv_block(384, 96, kernel_size=1, stride=1)
|
71 |
+
|
72 |
+
self.branch1 = nn.Sequential(
|
73 |
+
conv_block(384, 64, kernel_size=1, stride=1),
|
74 |
+
conv_block(64, 96, kernel_size=3, stride=1, padding=1)
|
75 |
+
)
|
76 |
+
|
77 |
+
self.branch2 = nn.Sequential(
|
78 |
+
conv_block(384, 64, kernel_size=1, stride=1),
|
79 |
+
conv_block(64, 96, kernel_size=3, stride=1, padding=1),
|
80 |
+
conv_block(96, 96, kernel_size=3, stride=1, padding=1)
|
81 |
+
)
|
82 |
+
|
83 |
+
self.branch3 = nn.Sequential(
|
84 |
+
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
85 |
+
conv_block(384, 96, kernel_size=1, stride=1)
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
x0 = self.branch0(x)
|
90 |
+
x1 = self.branch1(x)
|
91 |
+
x2 = self.branch2(x)
|
92 |
+
x3 = self.branch3(x)
|
93 |
+
out = torch.cat((x0, x1, x2, x3), 1)
|
94 |
+
return out
|
95 |
+
|
96 |
+
|
97 |
+
class ReductionA(nn.Module):
|
98 |
+
def __init__(self, conv_block=ConvNormAct):
|
99 |
+
super(ReductionA, self).__init__()
|
100 |
+
self.branch0 = conv_block(384, 384, kernel_size=3, stride=2)
|
101 |
+
|
102 |
+
self.branch1 = nn.Sequential(
|
103 |
+
conv_block(384, 192, kernel_size=1, stride=1),
|
104 |
+
conv_block(192, 224, kernel_size=3, stride=1, padding=1),
|
105 |
+
conv_block(224, 256, kernel_size=3, stride=2)
|
106 |
+
)
|
107 |
+
|
108 |
+
self.branch2 = nn.MaxPool2d(3, stride=2)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x0 = self.branch0(x)
|
112 |
+
x1 = self.branch1(x)
|
113 |
+
x2 = self.branch2(x)
|
114 |
+
out = torch.cat((x0, x1, x2), 1)
|
115 |
+
return out
|
116 |
+
|
117 |
+
|
118 |
+
class InceptionB(nn.Module):
|
119 |
+
def __init__(self, conv_block=ConvNormAct):
|
120 |
+
super(InceptionB, self).__init__()
|
121 |
+
self.branch0 = conv_block(1024, 384, kernel_size=1, stride=1)
|
122 |
+
|
123 |
+
self.branch1 = nn.Sequential(
|
124 |
+
conv_block(1024, 192, kernel_size=1, stride=1),
|
125 |
+
conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
126 |
+
conv_block(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
127 |
+
)
|
128 |
+
|
129 |
+
self.branch2 = nn.Sequential(
|
130 |
+
conv_block(1024, 192, kernel_size=1, stride=1),
|
131 |
+
conv_block(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
132 |
+
conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
133 |
+
conv_block(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
134 |
+
conv_block(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))
|
135 |
+
)
|
136 |
+
|
137 |
+
self.branch3 = nn.Sequential(
|
138 |
+
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
139 |
+
conv_block(1024, 128, kernel_size=1, stride=1)
|
140 |
+
)
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
x0 = self.branch0(x)
|
144 |
+
x1 = self.branch1(x)
|
145 |
+
x2 = self.branch2(x)
|
146 |
+
x3 = self.branch3(x)
|
147 |
+
out = torch.cat((x0, x1, x2, x3), 1)
|
148 |
+
return out
|
149 |
+
|
150 |
+
|
151 |
+
class ReductionB(nn.Module):
|
152 |
+
def __init__(self, conv_block=ConvNormAct):
|
153 |
+
super(ReductionB, self).__init__()
|
154 |
+
|
155 |
+
self.branch0 = nn.Sequential(
|
156 |
+
conv_block(1024, 192, kernel_size=1, stride=1),
|
157 |
+
conv_block(192, 192, kernel_size=3, stride=2)
|
158 |
+
)
|
159 |
+
|
160 |
+
self.branch1 = nn.Sequential(
|
161 |
+
conv_block(1024, 256, kernel_size=1, stride=1),
|
162 |
+
conv_block(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
163 |
+
conv_block(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
164 |
+
conv_block(320, 320, kernel_size=3, stride=2)
|
165 |
+
)
|
166 |
+
|
167 |
+
self.branch2 = nn.MaxPool2d(3, stride=2)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
x0 = self.branch0(x)
|
171 |
+
x1 = self.branch1(x)
|
172 |
+
x2 = self.branch2(x)
|
173 |
+
out = torch.cat((x0, x1, x2), 1)
|
174 |
+
return out
|
175 |
+
|
176 |
+
|
177 |
+
class InceptionC(nn.Module):
|
178 |
+
def __init__(self, conv_block=ConvNormAct):
|
179 |
+
super(InceptionC, self).__init__()
|
180 |
+
|
181 |
+
self.branch0 = conv_block(1536, 256, kernel_size=1, stride=1)
|
182 |
+
|
183 |
+
self.branch1_0 = conv_block(1536, 384, kernel_size=1, stride=1)
|
184 |
+
self.branch1_1a = conv_block(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
185 |
+
self.branch1_1b = conv_block(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
186 |
+
|
187 |
+
self.branch2_0 = conv_block(1536, 384, kernel_size=1, stride=1)
|
188 |
+
self.branch2_1 = conv_block(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
189 |
+
self.branch2_2 = conv_block(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
190 |
+
self.branch2_3a = conv_block(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
191 |
+
self.branch2_3b = conv_block(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
192 |
+
|
193 |
+
self.branch3 = nn.Sequential(
|
194 |
+
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
195 |
+
conv_block(1536, 256, kernel_size=1, stride=1)
|
196 |
+
)
|
197 |
+
|
198 |
+
def forward(self, x):
|
199 |
+
x0 = self.branch0(x)
|
200 |
+
|
201 |
+
x1_0 = self.branch1_0(x)
|
202 |
+
x1_1a = self.branch1_1a(x1_0)
|
203 |
+
x1_1b = self.branch1_1b(x1_0)
|
204 |
+
x1 = torch.cat((x1_1a, x1_1b), 1)
|
205 |
+
|
206 |
+
x2_0 = self.branch2_0(x)
|
207 |
+
x2_1 = self.branch2_1(x2_0)
|
208 |
+
x2_2 = self.branch2_2(x2_1)
|
209 |
+
x2_3a = self.branch2_3a(x2_2)
|
210 |
+
x2_3b = self.branch2_3b(x2_2)
|
211 |
+
x2 = torch.cat((x2_3a, x2_3b), 1)
|
212 |
+
|
213 |
+
x3 = self.branch3(x)
|
214 |
+
|
215 |
+
out = torch.cat((x0, x1, x2, x3), 1)
|
216 |
+
return out
|
217 |
+
|
218 |
+
|
219 |
+
class InceptionV4(nn.Module):
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
num_classes=1000,
|
223 |
+
in_chans=3,
|
224 |
+
output_stride=32,
|
225 |
+
drop_rate=0.,
|
226 |
+
global_pool='avg',
|
227 |
+
norm_layer='batchnorm2d',
|
228 |
+
norm_eps=1e-3,
|
229 |
+
act_layer='relu',
|
230 |
+
):
|
231 |
+
super(InceptionV4, self).__init__()
|
232 |
+
assert output_stride == 32
|
233 |
+
self.num_classes = num_classes
|
234 |
+
self.num_features = self.head_hidden_size = 1536
|
235 |
+
conv_block = partial(
|
236 |
+
ConvNormAct,
|
237 |
+
padding=0,
|
238 |
+
norm_layer=norm_layer,
|
239 |
+
act_layer=act_layer,
|
240 |
+
norm_kwargs=dict(eps=norm_eps),
|
241 |
+
act_kwargs=dict(inplace=True),
|
242 |
+
)
|
243 |
+
|
244 |
+
features = [
|
245 |
+
conv_block(in_chans, 32, kernel_size=3, stride=2),
|
246 |
+
conv_block(32, 32, kernel_size=3, stride=1),
|
247 |
+
conv_block(32, 64, kernel_size=3, stride=1, padding=1),
|
248 |
+
Mixed3a(conv_block),
|
249 |
+
Mixed4a(conv_block),
|
250 |
+
Mixed5a(conv_block),
|
251 |
+
]
|
252 |
+
features += [InceptionA(conv_block) for _ in range(4)]
|
253 |
+
features += [ReductionA(conv_block)] # Mixed6a
|
254 |
+
features += [InceptionB(conv_block) for _ in range(7)]
|
255 |
+
features += [ReductionB(conv_block)] # Mixed7a
|
256 |
+
features += [InceptionC(conv_block) for _ in range(3)]
|
257 |
+
self.features = nn.Sequential(*features)
|
258 |
+
self.feature_info = [
|
259 |
+
dict(num_chs=64, reduction=2, module='features.2'),
|
260 |
+
dict(num_chs=160, reduction=4, module='features.3'),
|
261 |
+
dict(num_chs=384, reduction=8, module='features.9'),
|
262 |
+
dict(num_chs=1024, reduction=16, module='features.17'),
|
263 |
+
dict(num_chs=1536, reduction=32, module='features.21'),
|
264 |
+
]
|
265 |
+
self.global_pool, self.head_drop, self.last_linear = create_classifier(
|
266 |
+
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
267 |
+
|
268 |
+
@torch.jit.ignore
|
269 |
+
def group_matcher(self, coarse=False):
|
270 |
+
return dict(
|
271 |
+
stem=r'^features\.[012]\.',
|
272 |
+
blocks=r'^features\.(\d+)'
|
273 |
+
)
|
274 |
+
|
275 |
+
@torch.jit.ignore
|
276 |
+
def set_grad_checkpointing(self, enable=True):
|
277 |
+
assert not enable, 'gradient checkpointing not supported'
|
278 |
+
|
279 |
+
@torch.jit.ignore
|
280 |
+
def get_classifier(self) -> nn.Module:
|
281 |
+
return self.last_linear
|
282 |
+
|
283 |
+
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
284 |
+
self.num_classes = num_classes
|
285 |
+
self.global_pool, self.last_linear = create_classifier(
|
286 |
+
self.num_features, self.num_classes, pool_type=global_pool)
|
287 |
+
|
288 |
+
def forward_features(self, x):
|
289 |
+
return self.features(x)
|
290 |
+
|
291 |
+
def forward_head(self, x, pre_logits: bool = False):
|
292 |
+
x = self.global_pool(x)
|
293 |
+
x = self.head_drop(x)
|
294 |
+
return x if pre_logits else self.last_linear(x)
|
295 |
+
|
296 |
+
def forward(self, x):
|
297 |
+
x = self.forward_features(x)
|
298 |
+
x = self.forward_head(x)
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
def _create_inception_v4(variant, pretrained=False, **kwargs) -> InceptionV4:
|
303 |
+
return build_model_with_cfg(
|
304 |
+
InceptionV4,
|
305 |
+
variant,
|
306 |
+
pretrained,
|
307 |
+
feature_cfg=dict(flatten_sequential=True),
|
308 |
+
**kwargs,
|
309 |
+
)
|
310 |
+
|
311 |
+
|
312 |
+
default_cfgs = generate_default_cfgs({
|
313 |
+
'inception_v4.tf_in1k': {
|
314 |
+
'hf_hub_id': 'timm/',
|
315 |
+
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
316 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
317 |
+
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
318 |
+
'first_conv': 'features.0.conv', 'classifier': 'last_linear',
|
319 |
+
}
|
320 |
+
})
|
321 |
+
|
322 |
+
|
323 |
+
@register_model
|
324 |
+
def inception_v4(pretrained=False, **kwargs):
|
325 |
+
return _create_inception_v4('inception_v4', pretrained, **kwargs)
|
pytorch-image-models/timm/models/layers/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE timm.models.layers is DEPRECATED, please use timm.layers, this is here to reduce breakages in transition
|
2 |
+
from timm.layers.activations import *
|
3 |
+
from timm.layers.adaptive_avgmax_pool import \
|
4 |
+
adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d
|
5 |
+
from timm.layers.attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding
|
6 |
+
from timm.layers.blur_pool import BlurPool2d
|
7 |
+
from timm.layers.classifier import ClassifierHead, create_classifier
|
8 |
+
from timm.layers.cond_conv2d import CondConv2d, get_condconv_initializer
|
9 |
+
from timm.layers.config import is_exportable, is_scriptable, is_no_jit, set_exportable, set_scriptable, set_no_jit,\
|
10 |
+
set_layer_config
|
11 |
+
from timm.layers.conv2d_same import Conv2dSame, conv2d_same
|
12 |
+
from timm.layers.conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct
|
13 |
+
from timm.layers.create_act import create_act_layer, get_act_layer, get_act_fn
|
14 |
+
from timm.layers.create_attn import get_attn, create_attn
|
15 |
+
from timm.layers.create_conv2d import create_conv2d
|
16 |
+
from timm.layers.create_norm import get_norm_layer, create_norm_layer
|
17 |
+
from timm.layers.create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer
|
18 |
+
from timm.layers.drop import DropBlock2d, DropPath, drop_block_2d, drop_path
|
19 |
+
from timm.layers.eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn
|
20 |
+
from timm.layers.evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2,\
|
21 |
+
EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a
|
22 |
+
from timm.layers.fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm
|
23 |
+
from timm.layers.filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d
|
24 |
+
from timm.layers.gather_excite import GatherExcite
|
25 |
+
from timm.layers.global_context import GlobalContext
|
26 |
+
from timm.layers.helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple
|
27 |
+
from timm.layers.inplace_abn import InplaceAbn
|
28 |
+
from timm.layers.linear import Linear
|
29 |
+
from timm.layers.mixed_conv2d import MixedConv2d
|
30 |
+
from timm.layers.mlp import Mlp, GluMlp, GatedMlp, ConvMlp
|
31 |
+
from timm.layers.non_local_attn import NonLocalAttn, BatNonLocalAttn
|
32 |
+
from timm.layers.norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d
|
33 |
+
from timm.layers.norm_act import BatchNormAct2d, GroupNormAct, convert_sync_batchnorm
|
34 |
+
from timm.layers.padding import get_padding, get_same_padding, pad_same
|
35 |
+
from timm.layers.patch_embed import PatchEmbed
|
36 |
+
from timm.layers.pool2d_same import AvgPool2dSame, create_pool2d
|
37 |
+
from timm.layers.squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite
|
38 |
+
from timm.layers.selective_kernel import SelectiveKernel
|
39 |
+
from timm.layers.separable_conv import SeparableConv2d, SeparableConvNormAct
|
40 |
+
from timm.layers.split_attn import SplitAttn
|
41 |
+
from timm.layers.split_batchnorm import SplitBatchNorm2d, convert_splitbn_model
|
42 |
+
from timm.layers.std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame
|
43 |
+
from timm.layers.test_time_pool import TestTimePoolHead, apply_test_time_pool
|
44 |
+
from timm.layers.trace_utils import _assert, _float_to_int
|
45 |
+
from timm.layers.weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_
|
46 |
+
|
47 |
+
import warnings
|
48 |
+
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
|
pytorch-image-models/timm/models/levit.py
ADDED
@@ -0,0 +1,997 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" LeViT
|
2 |
+
|
3 |
+
Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference`
|
4 |
+
- https://arxiv.org/abs/2104.01136
|
5 |
+
|
6 |
+
@article{graham2021levit,
|
7 |
+
title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference},
|
8 |
+
author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze},
|
9 |
+
journal={arXiv preprint arXiv:22104.01136},
|
10 |
+
year={2021}
|
11 |
+
}
|
12 |
+
|
13 |
+
Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow.
|
14 |
+
|
15 |
+
This version combines both conv/linear models and fixes torchscript compatibility.
|
16 |
+
|
17 |
+
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
18 |
+
"""
|
19 |
+
|
20 |
+
# Copyright (c) 2015-present, Facebook, Inc.
|
21 |
+
# All rights reserved.
|
22 |
+
|
23 |
+
# Modified from
|
24 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
25 |
+
# Copyright 2020 Ross Wightman, Apache-2.0 License
|
26 |
+
from collections import OrderedDict
|
27 |
+
from functools import partial
|
28 |
+
from typing import Dict, List, Optional, Tuple, Union
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
|
33 |
+
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN
|
34 |
+
from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_, ndgrid
|
35 |
+
from ._builder import build_model_with_cfg
|
36 |
+
from ._features import feature_take_indices
|
37 |
+
from ._manipulate import checkpoint_seq
|
38 |
+
from ._registry import generate_default_cfgs, register_model
|
39 |
+
|
40 |
+
__all__ = ['Levit']
|
41 |
+
|
42 |
+
|
43 |
+
class ConvNorm(nn.Module):
|
44 |
+
def __init__(
|
45 |
+
self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1):
|
46 |
+
super().__init__()
|
47 |
+
self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False)
|
48 |
+
self.bn = nn.BatchNorm2d(out_chs)
|
49 |
+
|
50 |
+
nn.init.constant_(self.bn.weight, bn_weight_init)
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def fuse(self):
|
54 |
+
c, bn = self.linear, self.bn
|
55 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
56 |
+
w = c.weight * w[:, None, None, None]
|
57 |
+
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
58 |
+
m = nn.Conv2d(
|
59 |
+
w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride,
|
60 |
+
padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups)
|
61 |
+
m.weight.data.copy_(w)
|
62 |
+
m.bias.data.copy_(b)
|
63 |
+
return m
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
return self.bn(self.linear(x))
|
67 |
+
|
68 |
+
|
69 |
+
class LinearNorm(nn.Module):
|
70 |
+
def __init__(self, in_features, out_features, bn_weight_init=1):
|
71 |
+
super().__init__()
|
72 |
+
self.linear = nn.Linear(in_features, out_features, bias=False)
|
73 |
+
self.bn = nn.BatchNorm1d(out_features)
|
74 |
+
|
75 |
+
nn.init.constant_(self.bn.weight, bn_weight_init)
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def fuse(self):
|
79 |
+
l, bn = self.linear, self.bn
|
80 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
81 |
+
w = l.weight * w[:, None]
|
82 |
+
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
83 |
+
m = nn.Linear(w.size(1), w.size(0))
|
84 |
+
m.weight.data.copy_(w)
|
85 |
+
m.bias.data.copy_(b)
|
86 |
+
return m
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
x = self.linear(x)
|
90 |
+
return self.bn(x.flatten(0, 1)).reshape_as(x)
|
91 |
+
|
92 |
+
|
93 |
+
class NormLinear(nn.Module):
|
94 |
+
def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.):
|
95 |
+
super().__init__()
|
96 |
+
self.bn = nn.BatchNorm1d(in_features)
|
97 |
+
self.drop = nn.Dropout(drop)
|
98 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
99 |
+
|
100 |
+
trunc_normal_(self.linear.weight, std=std)
|
101 |
+
if self.linear.bias is not None:
|
102 |
+
nn.init.constant_(self.linear.bias, 0)
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def fuse(self):
|
106 |
+
bn, l = self.bn, self.linear
|
107 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
108 |
+
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5
|
109 |
+
w = l.weight * w[None, :]
|
110 |
+
if l.bias is None:
|
111 |
+
b = b @ self.linear.weight.T
|
112 |
+
else:
|
113 |
+
b = (l.weight @ b[:, None]).view(-1) + self.linear.bias
|
114 |
+
m = nn.Linear(w.size(1), w.size(0))
|
115 |
+
m.weight.data.copy_(w)
|
116 |
+
m.bias.data.copy_(b)
|
117 |
+
return m
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
return self.linear(self.drop(self.bn(x)))
|
121 |
+
|
122 |
+
|
123 |
+
class Stem8(nn.Sequential):
|
124 |
+
def __init__(self, in_chs, out_chs, act_layer):
|
125 |
+
super().__init__()
|
126 |
+
self.stride = 8
|
127 |
+
|
128 |
+
self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1))
|
129 |
+
self.add_module('act1', act_layer())
|
130 |
+
self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1))
|
131 |
+
self.add_module('act2', act_layer())
|
132 |
+
self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1))
|
133 |
+
|
134 |
+
|
135 |
+
class Stem16(nn.Sequential):
|
136 |
+
def __init__(self, in_chs, out_chs, act_layer):
|
137 |
+
super().__init__()
|
138 |
+
self.stride = 16
|
139 |
+
|
140 |
+
self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1))
|
141 |
+
self.add_module('act1', act_layer())
|
142 |
+
self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1))
|
143 |
+
self.add_module('act2', act_layer())
|
144 |
+
self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1))
|
145 |
+
self.add_module('act3', act_layer())
|
146 |
+
self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1))
|
147 |
+
|
148 |
+
|
149 |
+
class Downsample(nn.Module):
|
150 |
+
def __init__(self, stride, resolution, use_pool=False):
|
151 |
+
super().__init__()
|
152 |
+
self.stride = stride
|
153 |
+
self.resolution = to_2tuple(resolution)
|
154 |
+
self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
B, N, C = x.shape
|
158 |
+
x = x.view(B, self.resolution[0], self.resolution[1], C)
|
159 |
+
if self.pool is not None:
|
160 |
+
x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
161 |
+
else:
|
162 |
+
x = x[:, ::self.stride, ::self.stride]
|
163 |
+
return x.reshape(B, -1, C)
|
164 |
+
|
165 |
+
|
166 |
+
class Attention(nn.Module):
|
167 |
+
attention_bias_cache: Dict[str, torch.Tensor]
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
dim,
|
172 |
+
key_dim,
|
173 |
+
num_heads=8,
|
174 |
+
attn_ratio=4.,
|
175 |
+
resolution=14,
|
176 |
+
use_conv=False,
|
177 |
+
act_layer=nn.SiLU,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
ln_layer = ConvNorm if use_conv else LinearNorm
|
181 |
+
resolution = to_2tuple(resolution)
|
182 |
+
|
183 |
+
self.use_conv = use_conv
|
184 |
+
self.num_heads = num_heads
|
185 |
+
self.scale = key_dim ** -0.5
|
186 |
+
self.key_dim = key_dim
|
187 |
+
self.key_attn_dim = key_dim * num_heads
|
188 |
+
self.val_dim = int(attn_ratio * key_dim)
|
189 |
+
self.val_attn_dim = int(attn_ratio * key_dim) * num_heads
|
190 |
+
|
191 |
+
self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2)
|
192 |
+
self.proj = nn.Sequential(OrderedDict([
|
193 |
+
('act', act_layer()),
|
194 |
+
('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0))
|
195 |
+
]))
|
196 |
+
|
197 |
+
self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
|
198 |
+
pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
|
199 |
+
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
|
200 |
+
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
|
201 |
+
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
|
202 |
+
self.attention_bias_cache = {}
|
203 |
+
|
204 |
+
@torch.no_grad()
|
205 |
+
def train(self, mode=True):
|
206 |
+
super().train(mode)
|
207 |
+
if mode and self.attention_bias_cache:
|
208 |
+
self.attention_bias_cache = {} # clear ab cache
|
209 |
+
|
210 |
+
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
211 |
+
if torch.jit.is_tracing() or self.training:
|
212 |
+
return self.attention_biases[:, self.attention_bias_idxs]
|
213 |
+
else:
|
214 |
+
device_key = str(device)
|
215 |
+
if device_key not in self.attention_bias_cache:
|
216 |
+
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
217 |
+
return self.attention_bias_cache[device_key]
|
218 |
+
|
219 |
+
def forward(self, x): # x (B,C,H,W)
|
220 |
+
if self.use_conv:
|
221 |
+
B, C, H, W = x.shape
|
222 |
+
q, k, v = self.qkv(x).view(
|
223 |
+
B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2)
|
224 |
+
|
225 |
+
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
|
226 |
+
attn = attn.softmax(dim=-1)
|
227 |
+
|
228 |
+
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
|
229 |
+
else:
|
230 |
+
B, N, C = x.shape
|
231 |
+
q, k, v = self.qkv(x).view(
|
232 |
+
B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3)
|
233 |
+
q = q.permute(0, 2, 1, 3)
|
234 |
+
k = k.permute(0, 2, 3, 1)
|
235 |
+
v = v.permute(0, 2, 1, 3)
|
236 |
+
|
237 |
+
attn = q @ k * self.scale + self.get_attention_biases(x.device)
|
238 |
+
attn = attn.softmax(dim=-1)
|
239 |
+
|
240 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim)
|
241 |
+
x = self.proj(x)
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
class AttentionDownsample(nn.Module):
|
246 |
+
attention_bias_cache: Dict[str, torch.Tensor]
|
247 |
+
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
in_dim,
|
251 |
+
out_dim,
|
252 |
+
key_dim,
|
253 |
+
num_heads=8,
|
254 |
+
attn_ratio=2.0,
|
255 |
+
stride=2,
|
256 |
+
resolution=14,
|
257 |
+
use_conv=False,
|
258 |
+
use_pool=False,
|
259 |
+
act_layer=nn.SiLU,
|
260 |
+
):
|
261 |
+
super().__init__()
|
262 |
+
resolution = to_2tuple(resolution)
|
263 |
+
|
264 |
+
self.stride = stride
|
265 |
+
self.resolution = resolution
|
266 |
+
self.num_heads = num_heads
|
267 |
+
self.key_dim = key_dim
|
268 |
+
self.key_attn_dim = key_dim * num_heads
|
269 |
+
self.val_dim = int(attn_ratio * key_dim)
|
270 |
+
self.val_attn_dim = self.val_dim * self.num_heads
|
271 |
+
self.scale = key_dim ** -0.5
|
272 |
+
self.use_conv = use_conv
|
273 |
+
|
274 |
+
if self.use_conv:
|
275 |
+
ln_layer = ConvNorm
|
276 |
+
sub_layer = partial(
|
277 |
+
nn.AvgPool2d,
|
278 |
+
kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False)
|
279 |
+
else:
|
280 |
+
ln_layer = LinearNorm
|
281 |
+
sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool)
|
282 |
+
|
283 |
+
self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim)
|
284 |
+
self.q = nn.Sequential(OrderedDict([
|
285 |
+
('down', sub_layer(stride=stride)),
|
286 |
+
('ln', ln_layer(in_dim, self.key_attn_dim))
|
287 |
+
]))
|
288 |
+
self.proj = nn.Sequential(OrderedDict([
|
289 |
+
('act', act_layer()),
|
290 |
+
('ln', ln_layer(self.val_attn_dim, out_dim))
|
291 |
+
]))
|
292 |
+
|
293 |
+
self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
|
294 |
+
k_pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
|
295 |
+
q_pos = torch.stack(ndgrid(
|
296 |
+
torch.arange(0, resolution[0], step=stride),
|
297 |
+
torch.arange(0, resolution[1], step=stride)
|
298 |
+
)).flatten(1)
|
299 |
+
rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs()
|
300 |
+
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
|
301 |
+
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
|
302 |
+
|
303 |
+
self.attention_bias_cache = {} # per-device attention_biases cache
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def train(self, mode=True):
|
307 |
+
super().train(mode)
|
308 |
+
if mode and self.attention_bias_cache:
|
309 |
+
self.attention_bias_cache = {} # clear ab cache
|
310 |
+
|
311 |
+
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
312 |
+
if torch.jit.is_tracing() or self.training:
|
313 |
+
return self.attention_biases[:, self.attention_bias_idxs]
|
314 |
+
else:
|
315 |
+
device_key = str(device)
|
316 |
+
if device_key not in self.attention_bias_cache:
|
317 |
+
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
318 |
+
return self.attention_bias_cache[device_key]
|
319 |
+
|
320 |
+
def forward(self, x):
|
321 |
+
if self.use_conv:
|
322 |
+
B, C, H, W = x.shape
|
323 |
+
HH, WW = (H - 1) // self.stride + 1, (W - 1) // self.stride + 1
|
324 |
+
k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2)
|
325 |
+
q = self.q(x).view(B, self.num_heads, self.key_dim, -1)
|
326 |
+
|
327 |
+
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
|
328 |
+
attn = attn.softmax(dim=-1)
|
329 |
+
|
330 |
+
x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW)
|
331 |
+
else:
|
332 |
+
B, N, C = x.shape
|
333 |
+
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3)
|
334 |
+
k = k.permute(0, 2, 3, 1) # BHCN
|
335 |
+
v = v.permute(0, 2, 1, 3) # BHNC
|
336 |
+
q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3)
|
337 |
+
|
338 |
+
attn = q @ k * self.scale + self.get_attention_biases(x.device)
|
339 |
+
attn = attn.softmax(dim=-1)
|
340 |
+
|
341 |
+
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim)
|
342 |
+
x = self.proj(x)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class LevitMlp(nn.Module):
|
347 |
+
""" MLP for Levit w/ normalization + ability to switch btw conv and linear
|
348 |
+
"""
|
349 |
+
def __init__(
|
350 |
+
self,
|
351 |
+
in_features,
|
352 |
+
hidden_features=None,
|
353 |
+
out_features=None,
|
354 |
+
use_conv=False,
|
355 |
+
act_layer=nn.SiLU,
|
356 |
+
drop=0.
|
357 |
+
):
|
358 |
+
super().__init__()
|
359 |
+
out_features = out_features or in_features
|
360 |
+
hidden_features = hidden_features or in_features
|
361 |
+
ln_layer = ConvNorm if use_conv else LinearNorm
|
362 |
+
|
363 |
+
self.ln1 = ln_layer(in_features, hidden_features)
|
364 |
+
self.act = act_layer()
|
365 |
+
self.drop = nn.Dropout(drop)
|
366 |
+
self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0)
|
367 |
+
|
368 |
+
def forward(self, x):
|
369 |
+
x = self.ln1(x)
|
370 |
+
x = self.act(x)
|
371 |
+
x = self.drop(x)
|
372 |
+
x = self.ln2(x)
|
373 |
+
return x
|
374 |
+
|
375 |
+
|
376 |
+
class LevitDownsample(nn.Module):
|
377 |
+
def __init__(
|
378 |
+
self,
|
379 |
+
in_dim,
|
380 |
+
out_dim,
|
381 |
+
key_dim,
|
382 |
+
num_heads=8,
|
383 |
+
attn_ratio=4.,
|
384 |
+
mlp_ratio=2.,
|
385 |
+
act_layer=nn.SiLU,
|
386 |
+
attn_act_layer=None,
|
387 |
+
resolution=14,
|
388 |
+
use_conv=False,
|
389 |
+
use_pool=False,
|
390 |
+
drop_path=0.,
|
391 |
+
):
|
392 |
+
super().__init__()
|
393 |
+
attn_act_layer = attn_act_layer or act_layer
|
394 |
+
|
395 |
+
self.attn_downsample = AttentionDownsample(
|
396 |
+
in_dim=in_dim,
|
397 |
+
out_dim=out_dim,
|
398 |
+
key_dim=key_dim,
|
399 |
+
num_heads=num_heads,
|
400 |
+
attn_ratio=attn_ratio,
|
401 |
+
act_layer=attn_act_layer,
|
402 |
+
resolution=resolution,
|
403 |
+
use_conv=use_conv,
|
404 |
+
use_pool=use_pool,
|
405 |
+
)
|
406 |
+
|
407 |
+
self.mlp = LevitMlp(
|
408 |
+
out_dim,
|
409 |
+
int(out_dim * mlp_ratio),
|
410 |
+
use_conv=use_conv,
|
411 |
+
act_layer=act_layer
|
412 |
+
)
|
413 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
414 |
+
|
415 |
+
def forward(self, x):
|
416 |
+
x = self.attn_downsample(x)
|
417 |
+
x = x + self.drop_path(self.mlp(x))
|
418 |
+
return x
|
419 |
+
|
420 |
+
|
421 |
+
class LevitBlock(nn.Module):
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
dim,
|
425 |
+
key_dim,
|
426 |
+
num_heads=8,
|
427 |
+
attn_ratio=4.,
|
428 |
+
mlp_ratio=2.,
|
429 |
+
resolution=14,
|
430 |
+
use_conv=False,
|
431 |
+
act_layer=nn.SiLU,
|
432 |
+
attn_act_layer=None,
|
433 |
+
drop_path=0.,
|
434 |
+
):
|
435 |
+
super().__init__()
|
436 |
+
attn_act_layer = attn_act_layer or act_layer
|
437 |
+
|
438 |
+
self.attn = Attention(
|
439 |
+
dim=dim,
|
440 |
+
key_dim=key_dim,
|
441 |
+
num_heads=num_heads,
|
442 |
+
attn_ratio=attn_ratio,
|
443 |
+
resolution=resolution,
|
444 |
+
use_conv=use_conv,
|
445 |
+
act_layer=attn_act_layer,
|
446 |
+
)
|
447 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
448 |
+
|
449 |
+
self.mlp = LevitMlp(
|
450 |
+
dim,
|
451 |
+
int(dim * mlp_ratio),
|
452 |
+
use_conv=use_conv,
|
453 |
+
act_layer=act_layer
|
454 |
+
)
|
455 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
456 |
+
|
457 |
+
def forward(self, x):
|
458 |
+
x = x + self.drop_path1(self.attn(x))
|
459 |
+
x = x + self.drop_path2(self.mlp(x))
|
460 |
+
return x
|
461 |
+
|
462 |
+
|
463 |
+
class LevitStage(nn.Module):
|
464 |
+
def __init__(
|
465 |
+
self,
|
466 |
+
in_dim,
|
467 |
+
out_dim,
|
468 |
+
key_dim,
|
469 |
+
depth=4,
|
470 |
+
num_heads=8,
|
471 |
+
attn_ratio=4.0,
|
472 |
+
mlp_ratio=4.0,
|
473 |
+
act_layer=nn.SiLU,
|
474 |
+
attn_act_layer=None,
|
475 |
+
resolution=14,
|
476 |
+
downsample='',
|
477 |
+
use_conv=False,
|
478 |
+
drop_path=0.,
|
479 |
+
):
|
480 |
+
super().__init__()
|
481 |
+
resolution = to_2tuple(resolution)
|
482 |
+
|
483 |
+
if downsample:
|
484 |
+
self.downsample = LevitDownsample(
|
485 |
+
in_dim,
|
486 |
+
out_dim,
|
487 |
+
key_dim=key_dim,
|
488 |
+
num_heads=in_dim // key_dim,
|
489 |
+
attn_ratio=4.,
|
490 |
+
mlp_ratio=2.,
|
491 |
+
act_layer=act_layer,
|
492 |
+
attn_act_layer=attn_act_layer,
|
493 |
+
resolution=resolution,
|
494 |
+
use_conv=use_conv,
|
495 |
+
drop_path=drop_path,
|
496 |
+
)
|
497 |
+
resolution = [(r - 1) // 2 + 1 for r in resolution]
|
498 |
+
else:
|
499 |
+
assert in_dim == out_dim
|
500 |
+
self.downsample = nn.Identity()
|
501 |
+
|
502 |
+
blocks = []
|
503 |
+
for _ in range(depth):
|
504 |
+
blocks += [LevitBlock(
|
505 |
+
out_dim,
|
506 |
+
key_dim,
|
507 |
+
num_heads=num_heads,
|
508 |
+
attn_ratio=attn_ratio,
|
509 |
+
mlp_ratio=mlp_ratio,
|
510 |
+
act_layer=act_layer,
|
511 |
+
attn_act_layer=attn_act_layer,
|
512 |
+
resolution=resolution,
|
513 |
+
use_conv=use_conv,
|
514 |
+
drop_path=drop_path,
|
515 |
+
)]
|
516 |
+
self.blocks = nn.Sequential(*blocks)
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
x = self.downsample(x)
|
520 |
+
x = self.blocks(x)
|
521 |
+
return x
|
522 |
+
|
523 |
+
|
524 |
+
class Levit(nn.Module):
|
525 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
526 |
+
|
527 |
+
NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems
|
528 |
+
w/ train scripts that don't take tuple outputs,
|
529 |
+
"""
|
530 |
+
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
img_size=224,
|
534 |
+
in_chans=3,
|
535 |
+
num_classes=1000,
|
536 |
+
embed_dim=(192,),
|
537 |
+
key_dim=64,
|
538 |
+
depth=(12,),
|
539 |
+
num_heads=(3,),
|
540 |
+
attn_ratio=2.,
|
541 |
+
mlp_ratio=2.,
|
542 |
+
stem_backbone=None,
|
543 |
+
stem_stride=None,
|
544 |
+
stem_type='s16',
|
545 |
+
down_op='subsample',
|
546 |
+
act_layer='hard_swish',
|
547 |
+
attn_act_layer=None,
|
548 |
+
use_conv=False,
|
549 |
+
global_pool='avg',
|
550 |
+
drop_rate=0.,
|
551 |
+
drop_path_rate=0.):
|
552 |
+
super().__init__()
|
553 |
+
act_layer = get_act_layer(act_layer)
|
554 |
+
attn_act_layer = get_act_layer(attn_act_layer or act_layer)
|
555 |
+
self.use_conv = use_conv
|
556 |
+
self.num_classes = num_classes
|
557 |
+
self.global_pool = global_pool
|
558 |
+
self.num_features = self.head_hidden_size = embed_dim[-1]
|
559 |
+
self.embed_dim = embed_dim
|
560 |
+
self.drop_rate = drop_rate
|
561 |
+
self.grad_checkpointing = False
|
562 |
+
self.feature_info = []
|
563 |
+
|
564 |
+
num_stages = len(embed_dim)
|
565 |
+
assert len(depth) == num_stages
|
566 |
+
num_heads = to_ntuple(num_stages)(num_heads)
|
567 |
+
attn_ratio = to_ntuple(num_stages)(attn_ratio)
|
568 |
+
mlp_ratio = to_ntuple(num_stages)(mlp_ratio)
|
569 |
+
|
570 |
+
if stem_backbone is not None:
|
571 |
+
assert stem_stride >= 2
|
572 |
+
self.stem = stem_backbone
|
573 |
+
stride = stem_stride
|
574 |
+
else:
|
575 |
+
assert stem_type in ('s16', 's8')
|
576 |
+
if stem_type == 's16':
|
577 |
+
self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer)
|
578 |
+
else:
|
579 |
+
self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer)
|
580 |
+
stride = self.stem.stride
|
581 |
+
resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))])
|
582 |
+
|
583 |
+
in_dim = embed_dim[0]
|
584 |
+
stages = []
|
585 |
+
for i in range(num_stages):
|
586 |
+
stage_stride = 2 if i > 0 else 1
|
587 |
+
stages += [LevitStage(
|
588 |
+
in_dim,
|
589 |
+
embed_dim[i],
|
590 |
+
key_dim,
|
591 |
+
depth=depth[i],
|
592 |
+
num_heads=num_heads[i],
|
593 |
+
attn_ratio=attn_ratio[i],
|
594 |
+
mlp_ratio=mlp_ratio[i],
|
595 |
+
act_layer=act_layer,
|
596 |
+
attn_act_layer=attn_act_layer,
|
597 |
+
resolution=resolution,
|
598 |
+
use_conv=use_conv,
|
599 |
+
downsample=down_op if stage_stride == 2 else '',
|
600 |
+
drop_path=drop_path_rate
|
601 |
+
)]
|
602 |
+
stride *= stage_stride
|
603 |
+
resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution])
|
604 |
+
self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')]
|
605 |
+
in_dim = embed_dim[i]
|
606 |
+
self.stages = nn.Sequential(*stages)
|
607 |
+
|
608 |
+
# Classifier head
|
609 |
+
self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity()
|
610 |
+
|
611 |
+
@torch.jit.ignore
|
612 |
+
def no_weight_decay(self):
|
613 |
+
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
|
614 |
+
|
615 |
+
@torch.jit.ignore
|
616 |
+
def group_matcher(self, coarse=False):
|
617 |
+
matcher = dict(
|
618 |
+
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
|
619 |
+
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
|
620 |
+
)
|
621 |
+
return matcher
|
622 |
+
|
623 |
+
@torch.jit.ignore
|
624 |
+
def set_grad_checkpointing(self, enable=True):
|
625 |
+
self.grad_checkpointing = enable
|
626 |
+
|
627 |
+
@torch.jit.ignore
|
628 |
+
def get_classifier(self) -> nn.Module:
|
629 |
+
return self.head
|
630 |
+
|
631 |
+
def reset_classifier(self, num_classes: int , global_pool: Optional[str] = None):
|
632 |
+
self.num_classes = num_classes
|
633 |
+
if global_pool is not None:
|
634 |
+
self.global_pool = global_pool
|
635 |
+
self.head = NormLinear(
|
636 |
+
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity()
|
637 |
+
|
638 |
+
def forward_intermediates(
|
639 |
+
self,
|
640 |
+
x: torch.Tensor,
|
641 |
+
indices: Optional[Union[int, List[int]]] = None,
|
642 |
+
norm: bool = False,
|
643 |
+
stop_early: bool = False,
|
644 |
+
output_fmt: str = 'NCHW',
|
645 |
+
intermediates_only: bool = False,
|
646 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
647 |
+
""" Forward features that returns intermediates.
|
648 |
+
|
649 |
+
Args:
|
650 |
+
x: Input image tensor
|
651 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
652 |
+
norm: Apply norm layer to compatible intermediates
|
653 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
654 |
+
output_fmt: Shape of intermediate feature outputs
|
655 |
+
intermediates_only: Only return intermediate features
|
656 |
+
Returns:
|
657 |
+
|
658 |
+
"""
|
659 |
+
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
660 |
+
intermediates = []
|
661 |
+
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
662 |
+
|
663 |
+
# forward pass
|
664 |
+
x = self.stem(x)
|
665 |
+
B, C, H, W = x.shape
|
666 |
+
if not self.use_conv:
|
667 |
+
x = x.flatten(2).transpose(1, 2)
|
668 |
+
|
669 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
670 |
+
stages = self.stages
|
671 |
+
else:
|
672 |
+
stages = self.stages[:max_index + 1]
|
673 |
+
for feat_idx, stage in enumerate(stages):
|
674 |
+
x = stage(x)
|
675 |
+
if feat_idx in take_indices:
|
676 |
+
if self.use_conv:
|
677 |
+
intermediates.append(x)
|
678 |
+
else:
|
679 |
+
intermediates.append(x.reshape(B, H, W, -1).permute(0, 3, 1, 2))
|
680 |
+
H = (H + 2 - 1) // 2
|
681 |
+
W = (W + 2 - 1) // 2
|
682 |
+
|
683 |
+
if intermediates_only:
|
684 |
+
return intermediates
|
685 |
+
|
686 |
+
return x, intermediates
|
687 |
+
|
688 |
+
def prune_intermediate_layers(
|
689 |
+
self,
|
690 |
+
indices: Union[int, List[int]] = 1,
|
691 |
+
prune_norm: bool = False,
|
692 |
+
prune_head: bool = True,
|
693 |
+
):
|
694 |
+
""" Prune layers not required for specified intermediates.
|
695 |
+
"""
|
696 |
+
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
697 |
+
self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0
|
698 |
+
if prune_head:
|
699 |
+
self.reset_classifier(0, '')
|
700 |
+
return take_indices
|
701 |
+
|
702 |
+
def forward_features(self, x):
|
703 |
+
x = self.stem(x)
|
704 |
+
if not self.use_conv:
|
705 |
+
x = x.flatten(2).transpose(1, 2)
|
706 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
707 |
+
x = checkpoint_seq(self.stages, x)
|
708 |
+
else:
|
709 |
+
x = self.stages(x)
|
710 |
+
return x
|
711 |
+
|
712 |
+
def forward_head(self, x, pre_logits: bool = False):
|
713 |
+
if self.global_pool == 'avg':
|
714 |
+
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1)
|
715 |
+
return x if pre_logits else self.head(x)
|
716 |
+
|
717 |
+
def forward(self, x):
|
718 |
+
x = self.forward_features(x)
|
719 |
+
x = self.forward_head(x)
|
720 |
+
return x
|
721 |
+
|
722 |
+
|
723 |
+
class LevitDistilled(Levit):
|
724 |
+
def __init__(self, *args, **kwargs):
|
725 |
+
super().__init__(*args, **kwargs)
|
726 |
+
self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity()
|
727 |
+
self.distilled_training = False # must set this True to train w/ distillation token
|
728 |
+
|
729 |
+
@torch.jit.ignore
|
730 |
+
def get_classifier(self) -> nn.Module:
|
731 |
+
return self.head, self.head_dist
|
732 |
+
|
733 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
734 |
+
self.num_classes = num_classes
|
735 |
+
if global_pool is not None:
|
736 |
+
self.global_pool = global_pool
|
737 |
+
self.head = NormLinear(
|
738 |
+
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity()
|
739 |
+
self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
740 |
+
|
741 |
+
@torch.jit.ignore
|
742 |
+
def set_distilled_training(self, enable=True):
|
743 |
+
self.distilled_training = enable
|
744 |
+
|
745 |
+
def forward_head(self, x, pre_logits: bool = False):
|
746 |
+
if self.global_pool == 'avg':
|
747 |
+
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1)
|
748 |
+
if pre_logits:
|
749 |
+
return x
|
750 |
+
x, x_dist = self.head(x), self.head_dist(x)
|
751 |
+
if self.distilled_training and self.training and not torch.jit.is_scripting():
|
752 |
+
# only return separate classification predictions when training in distilled mode
|
753 |
+
return x, x_dist
|
754 |
+
else:
|
755 |
+
# during standard train/finetune, inference average the classifier predictions
|
756 |
+
return (x + x_dist) / 2
|
757 |
+
|
758 |
+
|
759 |
+
def checkpoint_filter_fn(state_dict, model):
|
760 |
+
if 'model' in state_dict:
|
761 |
+
state_dict = state_dict['model']
|
762 |
+
|
763 |
+
# filter out attn biases, should not have been persistent
|
764 |
+
state_dict = {k: v for k, v in state_dict.items() if 'attention_bias_idxs' not in k}
|
765 |
+
|
766 |
+
D = model.state_dict()
|
767 |
+
out_dict = {}
|
768 |
+
for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()):
|
769 |
+
if va.ndim == 4 and vb.ndim == 2:
|
770 |
+
vb = vb[:, :, None, None]
|
771 |
+
if va.shape != vb.shape:
|
772 |
+
# head or first-conv shapes may change for fine-tune
|
773 |
+
assert 'head' in ka or 'stem.conv1.linear' in ka
|
774 |
+
out_dict[ka] = vb
|
775 |
+
|
776 |
+
return out_dict
|
777 |
+
|
778 |
+
|
779 |
+
model_cfgs = dict(
|
780 |
+
levit_128s=dict(
|
781 |
+
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)),
|
782 |
+
levit_128=dict(
|
783 |
+
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)),
|
784 |
+
levit_192=dict(
|
785 |
+
embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)),
|
786 |
+
levit_256=dict(
|
787 |
+
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)),
|
788 |
+
levit_384=dict(
|
789 |
+
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)),
|
790 |
+
|
791 |
+
# stride-8 stem experiments
|
792 |
+
levit_384_s8=dict(
|
793 |
+
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4),
|
794 |
+
act_layer='silu', stem_type='s8'),
|
795 |
+
levit_512_s8=dict(
|
796 |
+
embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4),
|
797 |
+
act_layer='silu', stem_type='s8'),
|
798 |
+
|
799 |
+
# wider experiments
|
800 |
+
levit_512=dict(
|
801 |
+
embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'),
|
802 |
+
|
803 |
+
# deeper experiments
|
804 |
+
levit_256d=dict(
|
805 |
+
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'),
|
806 |
+
levit_512d=dict(
|
807 |
+
embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu'),
|
808 |
+
)
|
809 |
+
|
810 |
+
|
811 |
+
def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs):
|
812 |
+
is_conv = '_conv' in variant
|
813 |
+
out_indices = kwargs.pop('out_indices', (0, 1, 2))
|
814 |
+
if kwargs.get('features_only', False) and not is_conv:
|
815 |
+
kwargs.setdefault('feature_cls', 'getter')
|
816 |
+
if cfg_variant is None:
|
817 |
+
if variant in model_cfgs:
|
818 |
+
cfg_variant = variant
|
819 |
+
elif is_conv:
|
820 |
+
cfg_variant = variant.replace('_conv', '')
|
821 |
+
|
822 |
+
model_cfg = dict(model_cfgs[cfg_variant], **kwargs)
|
823 |
+
model = build_model_with_cfg(
|
824 |
+
LevitDistilled if distilled else Levit,
|
825 |
+
variant,
|
826 |
+
pretrained,
|
827 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
828 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
829 |
+
**model_cfg,
|
830 |
+
)
|
831 |
+
return model
|
832 |
+
|
833 |
+
|
834 |
+
def _cfg(url='', **kwargs):
|
835 |
+
return {
|
836 |
+
'url': url,
|
837 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
838 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
839 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
840 |
+
'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'),
|
841 |
+
**kwargs
|
842 |
+
}
|
843 |
+
|
844 |
+
|
845 |
+
default_cfgs = generate_default_cfgs({
|
846 |
+
# weights in nn.Linear mode
|
847 |
+
'levit_128s.fb_dist_in1k': _cfg(
|
848 |
+
hf_hub_id='timm/',
|
849 |
+
),
|
850 |
+
'levit_128.fb_dist_in1k': _cfg(
|
851 |
+
hf_hub_id='timm/',
|
852 |
+
),
|
853 |
+
'levit_192.fb_dist_in1k': _cfg(
|
854 |
+
hf_hub_id='timm/',
|
855 |
+
),
|
856 |
+
'levit_256.fb_dist_in1k': _cfg(
|
857 |
+
hf_hub_id='timm/',
|
858 |
+
),
|
859 |
+
'levit_384.fb_dist_in1k': _cfg(
|
860 |
+
hf_hub_id='timm/',
|
861 |
+
),
|
862 |
+
|
863 |
+
# weights in nn.Conv2d mode
|
864 |
+
'levit_conv_128s.fb_dist_in1k': _cfg(
|
865 |
+
hf_hub_id='timm/',
|
866 |
+
pool_size=(4, 4),
|
867 |
+
),
|
868 |
+
'levit_conv_128.fb_dist_in1k': _cfg(
|
869 |
+
hf_hub_id='timm/',
|
870 |
+
pool_size=(4, 4),
|
871 |
+
),
|
872 |
+
'levit_conv_192.fb_dist_in1k': _cfg(
|
873 |
+
hf_hub_id='timm/',
|
874 |
+
pool_size=(4, 4),
|
875 |
+
),
|
876 |
+
'levit_conv_256.fb_dist_in1k': _cfg(
|
877 |
+
hf_hub_id='timm/',
|
878 |
+
pool_size=(4, 4),
|
879 |
+
),
|
880 |
+
'levit_conv_384.fb_dist_in1k': _cfg(
|
881 |
+
hf_hub_id='timm/',
|
882 |
+
pool_size=(4, 4),
|
883 |
+
),
|
884 |
+
|
885 |
+
'levit_384_s8.untrained': _cfg(classifier='head.linear'),
|
886 |
+
'levit_512_s8.untrained': _cfg(classifier='head.linear'),
|
887 |
+
'levit_512.untrained': _cfg(classifier='head.linear'),
|
888 |
+
'levit_256d.untrained': _cfg(classifier='head.linear'),
|
889 |
+
'levit_512d.untrained': _cfg(classifier='head.linear'),
|
890 |
+
|
891 |
+
'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'),
|
892 |
+
'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'),
|
893 |
+
'levit_conv_512.untrained': _cfg(classifier='head.linear'),
|
894 |
+
'levit_conv_256d.untrained': _cfg(classifier='head.linear'),
|
895 |
+
'levit_conv_512d.untrained': _cfg(classifier='head.linear'),
|
896 |
+
})
|
897 |
+
|
898 |
+
|
899 |
+
@register_model
|
900 |
+
def levit_128s(pretrained=False, **kwargs) -> Levit:
|
901 |
+
return create_levit('levit_128s', pretrained=pretrained, **kwargs)
|
902 |
+
|
903 |
+
|
904 |
+
@register_model
|
905 |
+
def levit_128(pretrained=False, **kwargs) -> Levit:
|
906 |
+
return create_levit('levit_128', pretrained=pretrained, **kwargs)
|
907 |
+
|
908 |
+
|
909 |
+
@register_model
|
910 |
+
def levit_192(pretrained=False, **kwargs) -> Levit:
|
911 |
+
return create_levit('levit_192', pretrained=pretrained, **kwargs)
|
912 |
+
|
913 |
+
|
914 |
+
@register_model
|
915 |
+
def levit_256(pretrained=False, **kwargs) -> Levit:
|
916 |
+
return create_levit('levit_256', pretrained=pretrained, **kwargs)
|
917 |
+
|
918 |
+
|
919 |
+
@register_model
|
920 |
+
def levit_384(pretrained=False, **kwargs) -> Levit:
|
921 |
+
return create_levit('levit_384', pretrained=pretrained, **kwargs)
|
922 |
+
|
923 |
+
|
924 |
+
@register_model
|
925 |
+
def levit_384_s8(pretrained=False, **kwargs) -> Levit:
|
926 |
+
return create_levit('levit_384_s8', pretrained=pretrained, **kwargs)
|
927 |
+
|
928 |
+
|
929 |
+
@register_model
|
930 |
+
def levit_512_s8(pretrained=False, **kwargs) -> Levit:
|
931 |
+
return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs)
|
932 |
+
|
933 |
+
|
934 |
+
@register_model
|
935 |
+
def levit_512(pretrained=False, **kwargs) -> Levit:
|
936 |
+
return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs)
|
937 |
+
|
938 |
+
|
939 |
+
@register_model
|
940 |
+
def levit_256d(pretrained=False, **kwargs) -> Levit:
|
941 |
+
return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs)
|
942 |
+
|
943 |
+
|
944 |
+
@register_model
|
945 |
+
def levit_512d(pretrained=False, **kwargs) -> Levit:
|
946 |
+
return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs)
|
947 |
+
|
948 |
+
|
949 |
+
@register_model
|
950 |
+
def levit_conv_128s(pretrained=False, **kwargs) -> Levit:
|
951 |
+
return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs)
|
952 |
+
|
953 |
+
|
954 |
+
@register_model
|
955 |
+
def levit_conv_128(pretrained=False, **kwargs) -> Levit:
|
956 |
+
return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs)
|
957 |
+
|
958 |
+
|
959 |
+
@register_model
|
960 |
+
def levit_conv_192(pretrained=False, **kwargs) -> Levit:
|
961 |
+
return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs)
|
962 |
+
|
963 |
+
|
964 |
+
@register_model
|
965 |
+
def levit_conv_256(pretrained=False, **kwargs) -> Levit:
|
966 |
+
return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs)
|
967 |
+
|
968 |
+
|
969 |
+
@register_model
|
970 |
+
def levit_conv_384(pretrained=False, **kwargs) -> Levit:
|
971 |
+
return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs)
|
972 |
+
|
973 |
+
|
974 |
+
@register_model
|
975 |
+
def levit_conv_384_s8(pretrained=False, **kwargs) -> Levit:
|
976 |
+
return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs)
|
977 |
+
|
978 |
+
|
979 |
+
@register_model
|
980 |
+
def levit_conv_512_s8(pretrained=False, **kwargs) -> Levit:
|
981 |
+
return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
|
982 |
+
|
983 |
+
|
984 |
+
@register_model
|
985 |
+
def levit_conv_512(pretrained=False, **kwargs) -> Levit:
|
986 |
+
return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
|
987 |
+
|
988 |
+
|
989 |
+
@register_model
|
990 |
+
def levit_conv_256d(pretrained=False, **kwargs) -> Levit:
|
991 |
+
return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
|
992 |
+
|
993 |
+
|
994 |
+
@register_model
|
995 |
+
def levit_conv_512d(pretrained=False, **kwargs) -> Levit:
|
996 |
+
return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
|
997 |
+
|
pytorch-image-models/timm/models/mambaout.py
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MambaOut models for image classification.
|
3 |
+
Some implementations are modified from:
|
4 |
+
timm (https://github.com/rwightman/pytorch-image-models),
|
5 |
+
MetaFormer (https://github.com/sail-sg/metaformer),
|
6 |
+
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
|
7 |
+
"""
|
8 |
+
from collections import OrderedDict
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
15 |
+
from timm.layers import trunc_normal_, DropPath, LayerNorm, LayerScale, ClNormMlpClassifierHead, get_act_layer
|
16 |
+
from ._builder import build_model_with_cfg
|
17 |
+
from ._manipulate import checkpoint_seq
|
18 |
+
from ._registry import register_model, generate_default_cfgs
|
19 |
+
|
20 |
+
|
21 |
+
class Stem(nn.Module):
|
22 |
+
r""" Code modified from InternImage:
|
23 |
+
https://github.com/OpenGVLab/InternImage
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
in_chs=3,
|
29 |
+
out_chs=96,
|
30 |
+
mid_norm: bool = True,
|
31 |
+
act_layer=nn.GELU,
|
32 |
+
norm_layer=LayerNorm,
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
self.conv1 = nn.Conv2d(
|
36 |
+
in_chs,
|
37 |
+
out_chs // 2,
|
38 |
+
kernel_size=3,
|
39 |
+
stride=2,
|
40 |
+
padding=1
|
41 |
+
)
|
42 |
+
self.norm1 = norm_layer(out_chs // 2) if mid_norm else None
|
43 |
+
self.act = act_layer()
|
44 |
+
self.conv2 = nn.Conv2d(
|
45 |
+
out_chs // 2,
|
46 |
+
out_chs,
|
47 |
+
kernel_size=3,
|
48 |
+
stride=2,
|
49 |
+
padding=1
|
50 |
+
)
|
51 |
+
self.norm2 = norm_layer(out_chs)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = self.conv1(x)
|
55 |
+
if self.norm1 is not None:
|
56 |
+
x = x.permute(0, 2, 3, 1)
|
57 |
+
x = self.norm1(x)
|
58 |
+
x = x.permute(0, 3, 1, 2)
|
59 |
+
x = self.act(x)
|
60 |
+
x = self.conv2(x)
|
61 |
+
x = x.permute(0, 2, 3, 1)
|
62 |
+
x = self.norm2(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class DownsampleNormFirst(nn.Module):
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
in_chs=96,
|
71 |
+
out_chs=198,
|
72 |
+
norm_layer=LayerNorm,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
self.norm = norm_layer(in_chs)
|
76 |
+
self.conv = nn.Conv2d(
|
77 |
+
in_chs,
|
78 |
+
out_chs,
|
79 |
+
kernel_size=3,
|
80 |
+
stride=2,
|
81 |
+
padding=1
|
82 |
+
)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
x = self.norm(x)
|
86 |
+
x = x.permute(0, 3, 1, 2)
|
87 |
+
x = self.conv(x)
|
88 |
+
x = x.permute(0, 2, 3, 1)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class Downsample(nn.Module):
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
in_chs=96,
|
97 |
+
out_chs=198,
|
98 |
+
norm_layer=LayerNorm,
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
self.conv = nn.Conv2d(
|
102 |
+
in_chs,
|
103 |
+
out_chs,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=2,
|
106 |
+
padding=1
|
107 |
+
)
|
108 |
+
self.norm = norm_layer(out_chs)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x = x.permute(0, 3, 1, 2)
|
112 |
+
x = self.conv(x)
|
113 |
+
x = x.permute(0, 2, 3, 1)
|
114 |
+
x = self.norm(x)
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class MlpHead(nn.Module):
|
119 |
+
""" MLP classification head
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
in_features,
|
125 |
+
num_classes=1000,
|
126 |
+
pool_type='avg',
|
127 |
+
act_layer=nn.GELU,
|
128 |
+
mlp_ratio=4,
|
129 |
+
norm_layer=LayerNorm,
|
130 |
+
drop_rate=0.,
|
131 |
+
bias=True,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
if mlp_ratio is not None:
|
135 |
+
hidden_size = int(mlp_ratio * in_features)
|
136 |
+
else:
|
137 |
+
hidden_size = None
|
138 |
+
self.pool_type = pool_type
|
139 |
+
self.in_features = in_features
|
140 |
+
self.hidden_size = hidden_size or in_features
|
141 |
+
|
142 |
+
self.norm = norm_layer(in_features)
|
143 |
+
if hidden_size:
|
144 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
145 |
+
('fc', nn.Linear(in_features, hidden_size)),
|
146 |
+
('act', act_layer()),
|
147 |
+
('norm', norm_layer(hidden_size))
|
148 |
+
]))
|
149 |
+
self.num_features = hidden_size
|
150 |
+
else:
|
151 |
+
self.num_features = in_features
|
152 |
+
self.pre_logits = nn.Identity()
|
153 |
+
|
154 |
+
self.fc = nn.Linear(self.num_features, num_classes, bias=bias) if num_classes > 0 else nn.Identity()
|
155 |
+
self.head_dropout = nn.Dropout(drop_rate)
|
156 |
+
|
157 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False):
|
158 |
+
if pool_type is not None:
|
159 |
+
self.pool_type = pool_type
|
160 |
+
if reset_other:
|
161 |
+
self.norm = nn.Identity()
|
162 |
+
self.pre_logits = nn.Identity()
|
163 |
+
self.num_features = self.in_features
|
164 |
+
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
165 |
+
|
166 |
+
def forward(self, x, pre_logits: bool = False):
|
167 |
+
if self.pool_type == 'avg':
|
168 |
+
x = x.mean((1, 2))
|
169 |
+
x = self.norm(x)
|
170 |
+
x = self.pre_logits(x)
|
171 |
+
x = self.head_dropout(x)
|
172 |
+
if pre_logits:
|
173 |
+
return x
|
174 |
+
x = self.fc(x)
|
175 |
+
return x
|
176 |
+
|
177 |
+
|
178 |
+
class GatedConvBlock(nn.Module):
|
179 |
+
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
|
180 |
+
Args:
|
181 |
+
conv_ratio: control the number of channels to conduct depthwise convolution.
|
182 |
+
Conduct convolution on partial channels can improve paraitcal efficiency.
|
183 |
+
The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
|
184 |
+
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
|
185 |
+
"""
|
186 |
+
|
187 |
+
def __init__(
|
188 |
+
self,
|
189 |
+
dim,
|
190 |
+
expansion_ratio=8 / 3,
|
191 |
+
kernel_size=7,
|
192 |
+
conv_ratio=1.0,
|
193 |
+
ls_init_value=None,
|
194 |
+
norm_layer=LayerNorm,
|
195 |
+
act_layer=nn.GELU,
|
196 |
+
drop_path=0.,
|
197 |
+
**kwargs
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
self.norm = norm_layer(dim)
|
201 |
+
hidden = int(expansion_ratio * dim)
|
202 |
+
self.fc1 = nn.Linear(dim, hidden * 2)
|
203 |
+
self.act = act_layer()
|
204 |
+
conv_channels = int(conv_ratio * dim)
|
205 |
+
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
|
206 |
+
self.conv = nn.Conv2d(
|
207 |
+
conv_channels,
|
208 |
+
conv_channels,
|
209 |
+
kernel_size=kernel_size,
|
210 |
+
padding=kernel_size // 2,
|
211 |
+
groups=conv_channels
|
212 |
+
)
|
213 |
+
self.fc2 = nn.Linear(hidden, dim)
|
214 |
+
self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity()
|
215 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
216 |
+
|
217 |
+
def forward(self, x):
|
218 |
+
shortcut = x # [B, H, W, C]
|
219 |
+
x = self.norm(x)
|
220 |
+
x = self.fc1(x)
|
221 |
+
g, i, c = torch.split(x, self.split_indices, dim=-1)
|
222 |
+
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
|
223 |
+
c = self.conv(c)
|
224 |
+
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
|
225 |
+
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
|
226 |
+
x = self.ls(x)
|
227 |
+
x = self.drop_path(x)
|
228 |
+
return x + shortcut
|
229 |
+
|
230 |
+
|
231 |
+
class MambaOutStage(nn.Module):
|
232 |
+
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
dim,
|
236 |
+
dim_out: Optional[int] = None,
|
237 |
+
depth: int = 4,
|
238 |
+
expansion_ratio=8 / 3,
|
239 |
+
kernel_size=7,
|
240 |
+
conv_ratio=1.0,
|
241 |
+
downsample: str = '',
|
242 |
+
ls_init_value: Optional[float] = None,
|
243 |
+
norm_layer=LayerNorm,
|
244 |
+
act_layer=nn.GELU,
|
245 |
+
drop_path=0.,
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
dim_out = dim_out or dim
|
249 |
+
self.grad_checkpointing = False
|
250 |
+
|
251 |
+
if downsample == 'conv':
|
252 |
+
self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer)
|
253 |
+
elif downsample == 'conv_nf':
|
254 |
+
self.downsample = DownsampleNormFirst(dim, dim_out, norm_layer=norm_layer)
|
255 |
+
else:
|
256 |
+
assert dim == dim_out
|
257 |
+
self.downsample = nn.Identity()
|
258 |
+
|
259 |
+
self.blocks = nn.Sequential(*[
|
260 |
+
GatedConvBlock(
|
261 |
+
dim=dim_out,
|
262 |
+
expansion_ratio=expansion_ratio,
|
263 |
+
kernel_size=kernel_size,
|
264 |
+
conv_ratio=conv_ratio,
|
265 |
+
ls_init_value=ls_init_value,
|
266 |
+
norm_layer=norm_layer,
|
267 |
+
act_layer=act_layer,
|
268 |
+
drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path,
|
269 |
+
)
|
270 |
+
for j in range(depth)
|
271 |
+
])
|
272 |
+
|
273 |
+
def forward(self, x):
|
274 |
+
x = self.downsample(x)
|
275 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
276 |
+
x = checkpoint_seq(self.blocks, x)
|
277 |
+
else:
|
278 |
+
x = self.blocks(x)
|
279 |
+
return x
|
280 |
+
|
281 |
+
|
282 |
+
class MambaOut(nn.Module):
|
283 |
+
r""" MetaFormer
|
284 |
+
A PyTorch impl of : `MetaFormer Baselines for Vision` -
|
285 |
+
https://arxiv.org/abs/2210.13452
|
286 |
+
|
287 |
+
Args:
|
288 |
+
in_chans (int): Number of input image channels. Default: 3.
|
289 |
+
num_classes (int): Number of classes for classification head. Default: 1000.
|
290 |
+
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
|
291 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
|
292 |
+
downsample_layers: (list or tuple): Downsampling layers before each stage.
|
293 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
294 |
+
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
|
295 |
+
head_fn: classification head. Default: nn.Linear.
|
296 |
+
head_dropout (float): dropout for MLP classifier. Default: 0.
|
297 |
+
"""
|
298 |
+
|
299 |
+
def __init__(
|
300 |
+
self,
|
301 |
+
in_chans=3,
|
302 |
+
num_classes=1000,
|
303 |
+
global_pool='avg',
|
304 |
+
depths=(3, 3, 9, 3),
|
305 |
+
dims=(96, 192, 384, 576),
|
306 |
+
norm_layer=LayerNorm,
|
307 |
+
act_layer=nn.GELU,
|
308 |
+
conv_ratio=1.0,
|
309 |
+
expansion_ratio=8/3,
|
310 |
+
kernel_size=7,
|
311 |
+
stem_mid_norm=True,
|
312 |
+
ls_init_value=None,
|
313 |
+
downsample='conv',
|
314 |
+
drop_path_rate=0.,
|
315 |
+
drop_rate=0.,
|
316 |
+
head_fn='default',
|
317 |
+
):
|
318 |
+
super().__init__()
|
319 |
+
self.num_classes = num_classes
|
320 |
+
self.drop_rate = drop_rate
|
321 |
+
self.output_fmt = 'NHWC'
|
322 |
+
if not isinstance(depths, (list, tuple)):
|
323 |
+
depths = [depths] # it means the model has only one stage
|
324 |
+
if not isinstance(dims, (list, tuple)):
|
325 |
+
dims = [dims]
|
326 |
+
act_layer = get_act_layer(act_layer)
|
327 |
+
|
328 |
+
num_stage = len(depths)
|
329 |
+
self.num_stage = num_stage
|
330 |
+
self.feature_info = []
|
331 |
+
|
332 |
+
self.stem = Stem(
|
333 |
+
in_chans,
|
334 |
+
dims[0],
|
335 |
+
mid_norm=stem_mid_norm,
|
336 |
+
act_layer=act_layer,
|
337 |
+
norm_layer=norm_layer,
|
338 |
+
)
|
339 |
+
prev_dim = dims[0]
|
340 |
+
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
341 |
+
cur = 0
|
342 |
+
curr_stride = 4
|
343 |
+
self.stages = nn.Sequential()
|
344 |
+
for i in range(num_stage):
|
345 |
+
dim = dims[i]
|
346 |
+
stride = 2 if curr_stride == 2 or i > 0 else 1
|
347 |
+
curr_stride *= stride
|
348 |
+
stage = MambaOutStage(
|
349 |
+
dim=prev_dim,
|
350 |
+
dim_out=dim,
|
351 |
+
depth=depths[i],
|
352 |
+
kernel_size=kernel_size,
|
353 |
+
conv_ratio=conv_ratio,
|
354 |
+
expansion_ratio=expansion_ratio,
|
355 |
+
downsample=downsample if i > 0 else '',
|
356 |
+
ls_init_value=ls_init_value,
|
357 |
+
norm_layer=norm_layer,
|
358 |
+
act_layer=act_layer,
|
359 |
+
drop_path=dp_rates[i],
|
360 |
+
)
|
361 |
+
self.stages.append(stage)
|
362 |
+
prev_dim = dim
|
363 |
+
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
364 |
+
self.feature_info += [dict(num_chs=prev_dim, reduction=curr_stride, module=f'stages.{i}')]
|
365 |
+
cur += depths[i]
|
366 |
+
|
367 |
+
if head_fn == 'default':
|
368 |
+
# specific to this model, unusual norm -> pool -> fc -> act -> norm -> fc combo
|
369 |
+
self.head = MlpHead(
|
370 |
+
prev_dim,
|
371 |
+
num_classes,
|
372 |
+
pool_type=global_pool,
|
373 |
+
drop_rate=drop_rate,
|
374 |
+
norm_layer=norm_layer,
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
# more typical norm -> pool -> fc -> act -> fc
|
378 |
+
self.head = ClNormMlpClassifierHead(
|
379 |
+
prev_dim,
|
380 |
+
num_classes,
|
381 |
+
hidden_size=int(prev_dim * 4),
|
382 |
+
pool_type=global_pool,
|
383 |
+
norm_layer=norm_layer,
|
384 |
+
drop_rate=drop_rate,
|
385 |
+
)
|
386 |
+
self.num_features = prev_dim
|
387 |
+
self.head_hidden_size = self.head.num_features
|
388 |
+
|
389 |
+
self.apply(self._init_weights)
|
390 |
+
|
391 |
+
def _init_weights(self, m):
|
392 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
393 |
+
trunc_normal_(m.weight, std=.02)
|
394 |
+
if m.bias is not None:
|
395 |
+
nn.init.constant_(m.bias, 0)
|
396 |
+
|
397 |
+
@torch.jit.ignore
|
398 |
+
def group_matcher(self, coarse=False):
|
399 |
+
return dict(
|
400 |
+
stem=r'^stem',
|
401 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
402 |
+
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
|
403 |
+
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
404 |
+
]
|
405 |
+
)
|
406 |
+
|
407 |
+
@torch.jit.ignore
|
408 |
+
def set_grad_checkpointing(self, enable=True):
|
409 |
+
for s in self.stages:
|
410 |
+
s.grad_checkpointing = enable
|
411 |
+
|
412 |
+
@torch.jit.ignore
|
413 |
+
def get_classifier(self) -> nn.Module:
|
414 |
+
return self.head.fc
|
415 |
+
|
416 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
417 |
+
self.num_classes = num_classes
|
418 |
+
self.head.reset(num_classes, global_pool)
|
419 |
+
|
420 |
+
def forward_features(self, x):
|
421 |
+
x = self.stem(x)
|
422 |
+
x = self.stages(x)
|
423 |
+
return x
|
424 |
+
|
425 |
+
def forward_head(self, x, pre_logits: bool = False):
|
426 |
+
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
427 |
+
return x
|
428 |
+
|
429 |
+
def forward(self, x):
|
430 |
+
x = self.forward_features(x)
|
431 |
+
x = self.forward_head(x)
|
432 |
+
return x
|
433 |
+
|
434 |
+
|
435 |
+
def checkpoint_filter_fn(state_dict, model):
|
436 |
+
if 'model' in state_dict:
|
437 |
+
state_dict = state_dict['model']
|
438 |
+
if 'stem.conv1.weight' in state_dict:
|
439 |
+
return state_dict
|
440 |
+
|
441 |
+
import re
|
442 |
+
out_dict = {}
|
443 |
+
for k, v in state_dict.items():
|
444 |
+
k = k.replace('downsample_layers.0.', 'stem.')
|
445 |
+
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
|
446 |
+
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k)
|
447 |
+
# remap head names
|
448 |
+
if k.startswith('norm.'):
|
449 |
+
# this is moving to head since it's after the pooling
|
450 |
+
k = k.replace('norm.', 'head.norm.')
|
451 |
+
elif k.startswith('head.'):
|
452 |
+
k = k.replace('head.fc1.', 'head.pre_logits.fc.')
|
453 |
+
k = k.replace('head.norm.', 'head.pre_logits.norm.')
|
454 |
+
k = k.replace('head.fc2.', 'head.fc.')
|
455 |
+
out_dict[k] = v
|
456 |
+
|
457 |
+
return out_dict
|
458 |
+
|
459 |
+
|
460 |
+
def _cfg(url='', **kwargs):
|
461 |
+
return {
|
462 |
+
'url': url,
|
463 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'test_input_size': (3, 288, 288),
|
464 |
+
'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bicubic',
|
465 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
466 |
+
'first_conv': 'stem.conv1', 'classifier': 'head.fc',
|
467 |
+
**kwargs
|
468 |
+
}
|
469 |
+
|
470 |
+
|
471 |
+
default_cfgs = generate_default_cfgs({
|
472 |
+
# original weights
|
473 |
+
'mambaout_femto.in1k': _cfg(
|
474 |
+
hf_hub_id='timm/'),
|
475 |
+
'mambaout_kobe.in1k': _cfg(
|
476 |
+
hf_hub_id='timm/'),
|
477 |
+
'mambaout_tiny.in1k': _cfg(
|
478 |
+
hf_hub_id='timm/'),
|
479 |
+
'mambaout_small.in1k': _cfg(
|
480 |
+
hf_hub_id='timm/'),
|
481 |
+
'mambaout_base.in1k': _cfg(
|
482 |
+
hf_hub_id='timm/'),
|
483 |
+
|
484 |
+
# timm experiments below
|
485 |
+
'mambaout_small_rw.sw_e450_in1k': _cfg(
|
486 |
+
hf_hub_id='timm/',
|
487 |
+
),
|
488 |
+
'mambaout_base_short_rw.sw_e500_in1k': _cfg(
|
489 |
+
hf_hub_id='timm/',
|
490 |
+
crop_pct=0.95, test_crop_pct=1.0,
|
491 |
+
),
|
492 |
+
'mambaout_base_tall_rw.sw_e500_in1k': _cfg(
|
493 |
+
hf_hub_id='timm/',
|
494 |
+
crop_pct=0.95, test_crop_pct=1.0,
|
495 |
+
),
|
496 |
+
'mambaout_base_wide_rw.sw_e500_in1k': _cfg(
|
497 |
+
hf_hub_id='timm/',
|
498 |
+
crop_pct=0.95, test_crop_pct=1.0,
|
499 |
+
),
|
500 |
+
'mambaout_base_plus_rw.sw_e150_in12k_ft_in1k': _cfg(
|
501 |
+
hf_hub_id='timm/',
|
502 |
+
),
|
503 |
+
'mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k': _cfg(
|
504 |
+
hf_hub_id='timm/',
|
505 |
+
input_size=(3, 384, 384), test_input_size=(3, 384, 384), crop_mode='squash', pool_size=(12, 12),
|
506 |
+
),
|
507 |
+
'mambaout_base_plus_rw.sw_e150_in12k': _cfg(
|
508 |
+
hf_hub_id='timm/',
|
509 |
+
num_classes=11821,
|
510 |
+
),
|
511 |
+
'test_mambaout': _cfg(input_size=(3, 160, 160), test_input_size=(3, 192, 192), pool_size=(5, 5)),
|
512 |
+
})
|
513 |
+
|
514 |
+
|
515 |
+
def _create_mambaout(variant, pretrained=False, **kwargs):
|
516 |
+
model = build_model_with_cfg(
|
517 |
+
MambaOut, variant, pretrained,
|
518 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
519 |
+
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
520 |
+
**kwargs,
|
521 |
+
)
|
522 |
+
return model
|
523 |
+
|
524 |
+
|
525 |
+
# a series of MambaOut models
|
526 |
+
@register_model
|
527 |
+
def mambaout_femto(pretrained=False, **kwargs):
|
528 |
+
model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 192, 288))
|
529 |
+
return _create_mambaout('mambaout_femto', pretrained=pretrained, **dict(model_args, **kwargs))
|
530 |
+
|
531 |
+
# Kobe Memorial Version with 24 Gated CNN blocks
|
532 |
+
@register_model
|
533 |
+
def mambaout_kobe(pretrained=False, **kwargs):
|
534 |
+
model_args = dict(depths=[3, 3, 15, 3], dims=[48, 96, 192, 288])
|
535 |
+
return _create_mambaout('mambaout_kobe', pretrained=pretrained, **dict(model_args, **kwargs))
|
536 |
+
|
537 |
+
@register_model
|
538 |
+
def mambaout_tiny(pretrained=False, **kwargs):
|
539 |
+
model_args = dict(depths=[3, 3, 9, 3], dims=[96, 192, 384, 576])
|
540 |
+
return _create_mambaout('mambaout_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
|
541 |
+
|
542 |
+
|
543 |
+
@register_model
|
544 |
+
def mambaout_small(pretrained=False, **kwargs):
|
545 |
+
model_args = dict(depths=[3, 4, 27, 3], dims=[96, 192, 384, 576])
|
546 |
+
return _create_mambaout('mambaout_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
547 |
+
|
548 |
+
|
549 |
+
@register_model
|
550 |
+
def mambaout_base(pretrained=False, **kwargs):
|
551 |
+
model_args = dict(depths=[3, 4, 27, 3], dims=[128, 256, 512, 768])
|
552 |
+
return _create_mambaout('mambaout_base', pretrained=pretrained, **dict(model_args, **kwargs))
|
553 |
+
|
554 |
+
|
555 |
+
@register_model
|
556 |
+
def mambaout_small_rw(pretrained=False, **kwargs):
|
557 |
+
model_args = dict(
|
558 |
+
depths=[3, 4, 27, 3],
|
559 |
+
dims=[96, 192, 384, 576],
|
560 |
+
stem_mid_norm=False,
|
561 |
+
downsample='conv_nf',
|
562 |
+
ls_init_value=1e-6,
|
563 |
+
head_fn='norm_mlp',
|
564 |
+
)
|
565 |
+
return _create_mambaout('mambaout_small_rw', pretrained=pretrained, **dict(model_args, **kwargs))
|
566 |
+
|
567 |
+
|
568 |
+
@register_model
|
569 |
+
def mambaout_base_short_rw(pretrained=False, **kwargs):
|
570 |
+
model_args = dict(
|
571 |
+
depths=(3, 3, 25, 3),
|
572 |
+
dims=(128, 256, 512, 768),
|
573 |
+
expansion_ratio=3.0,
|
574 |
+
conv_ratio=1.25,
|
575 |
+
stem_mid_norm=False,
|
576 |
+
downsample='conv_nf',
|
577 |
+
ls_init_value=1e-6,
|
578 |
+
head_fn='norm_mlp',
|
579 |
+
)
|
580 |
+
return _create_mambaout('mambaout_base_short_rw', pretrained=pretrained, **dict(model_args, **kwargs))
|
581 |
+
|
582 |
+
|
583 |
+
@register_model
|
584 |
+
def mambaout_base_tall_rw(pretrained=False, **kwargs):
|
585 |
+
model_args = dict(
|
586 |
+
depths=(3, 4, 30, 3),
|
587 |
+
dims=(128, 256, 512, 768),
|
588 |
+
expansion_ratio=2.5,
|
589 |
+
conv_ratio=1.25,
|
590 |
+
stem_mid_norm=False,
|
591 |
+
downsample='conv_nf',
|
592 |
+
ls_init_value=1e-6,
|
593 |
+
head_fn='norm_mlp',
|
594 |
+
)
|
595 |
+
return _create_mambaout('mambaout_base_tall_rw', pretrained=pretrained, **dict(model_args, **kwargs))
|
596 |
+
|
597 |
+
|
598 |
+
@register_model
|
599 |
+
def mambaout_base_wide_rw(pretrained=False, **kwargs):
|
600 |
+
model_args = dict(
|
601 |
+
depths=(3, 4, 27, 3),
|
602 |
+
dims=(128, 256, 512, 768),
|
603 |
+
expansion_ratio=3.0,
|
604 |
+
conv_ratio=1.5,
|
605 |
+
stem_mid_norm=False,
|
606 |
+
downsample='conv_nf',
|
607 |
+
ls_init_value=1e-6,
|
608 |
+
act_layer='silu',
|
609 |
+
head_fn='norm_mlp',
|
610 |
+
)
|
611 |
+
return _create_mambaout('mambaout_base_wide_rw', pretrained=pretrained, **dict(model_args, **kwargs))
|
612 |
+
|
613 |
+
|
614 |
+
@register_model
|
615 |
+
def mambaout_base_plus_rw(pretrained=False, **kwargs):
|
616 |
+
model_args = dict(
|
617 |
+
depths=(3, 4, 30, 3),
|
618 |
+
dims=(128, 256, 512, 768),
|
619 |
+
expansion_ratio=3.0,
|
620 |
+
conv_ratio=1.5,
|
621 |
+
stem_mid_norm=False,
|
622 |
+
downsample='conv_nf',
|
623 |
+
ls_init_value=1e-6,
|
624 |
+
act_layer='silu',
|
625 |
+
head_fn='norm_mlp',
|
626 |
+
)
|
627 |
+
return _create_mambaout('mambaout_base_plus_rw', pretrained=pretrained, **dict(model_args, **kwargs))
|
628 |
+
|
629 |
+
|
630 |
+
@register_model
|
631 |
+
def test_mambaout(pretrained=False, **kwargs):
|
632 |
+
model_args = dict(
|
633 |
+
depths=(1, 1, 3, 1),
|
634 |
+
dims=(16, 32, 48, 64),
|
635 |
+
expansion_ratio=3,
|
636 |
+
stem_mid_norm=False,
|
637 |
+
downsample='conv_nf',
|
638 |
+
ls_init_value=1e-4,
|
639 |
+
act_layer='silu',
|
640 |
+
head_fn='norm_mlp',
|
641 |
+
)
|
642 |
+
return _create_mambaout('test_mambaout', pretrained=pretrained, **dict(model_args, **kwargs))
|