meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
23.4 kB
import math
from copy import deepcopy
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit import Final
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
def window_partition(x, window_size: Tuple[int, int]):
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
"""
Window unpartition into original sequences and removing padding.
Args:
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
H, W = hw
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
Hp, Wp = H + pad_h, W + pad_w
return Hp, Wp, pad_h, pad_w
class MultiScaleAttention(nn.Module):
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
q_pool: nn.Module = None,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.q_pool = q_pool
self.qkv = nn.Linear(dim, dim_out * 3)
self.proj = nn.Linear(dim_out, dim_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (B, H * W, 3, nHead, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
# q, k, v with shape (B, H * W, nheads, C)
q, k, v = torch.unbind(qkv, 2)
# Q pooling (for downsample at stage changes)
if self.q_pool is not None:
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
q = self.q_pool(q).permute(0, 2, 3, 1)
H, W = q.shape[1:3] # downsampled shape
q = q.reshape(B, H * W, self.num_heads, -1)
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if self.fused_attn:
x = F.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = q @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = attn @ v
# Transpose back
x = x.transpose(1, 2).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
mlp_ratio: float = 4.0,
q_stride: Optional[Tuple[int, int]] = None,
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
window_size: int = 0,
init_values: Optional[float] = None,
drop_path: float = 0.0,
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
self.window_size = to_2tuple(window_size)
self.is_windowed = any(self.window_size)
self.dim = dim
self.dim_out = dim_out
self.q_stride = q_stride
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
else:
self.proj = nn.Identity()
self.pool = None
if self.q_stride:
# note make a different instance for this Module so that it's not shared with attn module
self.pool = nn.MaxPool2d(
kernel_size=q_stride,
stride=q_stride,
ceil_mode=False,
)
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
q_pool=deepcopy(self.pool),
)
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
dim_out,
int(dim_out * mlp_ratio),
act_layer=act_layer,
)
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x # B, H, W, C
x = self.norm1(x)
# Skip connection
if self.dim != self.dim_out:
shortcut = self.proj(x)
if self.pool is not None:
shortcut = shortcut.permute(0, 3, 1, 2)
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
# Window partition
window_size = self.window_size
H, W = x.shape[1:3]
Hp, Wp = H, W # keep torchscript happy
if self.is_windowed:
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
x = window_partition(x, window_size)
# Window Attention + Q Pooling (if stage change)
x = self.attn(x)
if self.q_stride is not None:
# Shapes have changed due to Q pooling
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
H, W = shortcut.shape[1:3]
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
# Reverse window partition
if self.is_windowed:
x = window_unpartition(x, window_size, (Hp, Wp))
x = x[:, :H, :W, :].contiguous() # unpad
x = shortcut + self.drop_path1(self.ls1(x))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class HieraPatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, ...] = (7, 7),
stride: Tuple[int, ...] = (4, 4),
padding: Tuple[int, ...] = (3, 3),
in_chans: int = 3,
embed_dim: int = 768,
):
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
class HieraDet(nn.Module):
"""
Reference: https://arxiv.org/abs/2306.00989
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
patch_kernel: Tuple[int, ...] = (7, 7),
patch_stride: Tuple[int, ...] = (4, 4),
patch_padding: Tuple[int, ...] = (3, 3),
patch_size: Optional[Tuple[int, ...]] = None,
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
dim_mul: float = 2.0, # dim_mul factor at stage shift
head_mul: float = 2.0, # head_mul factor at stage shift
global_pos_size: Tuple[int, int] = (7, 7),
# window size per stage, when not using global att.
window_spec: Tuple[int, ...] = (
8,
4,
14,
7,
),
# global attn in these blocks
global_att_blocks: Tuple[int, ...] = (
12,
16,
20,
),
init_values: Optional[float] = None,
weight_init: str = '',
fix_init: bool = True,
head_init_scale: float = 0.001,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0, # stochastic depth
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
assert len(stages) == len(window_spec)
self.num_classes = num_classes
self.window_spec = window_spec
self.output_fmt = 'NHWC'
depth = sum(stages)
self.q_stride = q_stride
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
assert 0 <= q_pool <= len(self.stage_ends[:-1])
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
if patch_size is not None:
# use a non-overlapping vit style patch embed
self.patch_embed = PatchEmbed(
img_size=None,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
output_fmt='NHWC',
dynamic_img_pad=True,
)
else:
self.patch_embed = HieraPatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
# Which blocks have global att?
self.global_att_blocks = global_att_blocks
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
self.global_pos_size = global_pos_size
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
cur_stage = 0
self.blocks = nn.Sequential()
self.feature_info = []
for i in range(depth):
dim_out = embed_dim
# lags by a block, so first block of
# next stage uses an initial window size
# of previous stage and final window size of current stage
window_size = self.window_spec[cur_stage]
if self.global_att_blocks is not None:
window_size = 0 if i in self.global_att_blocks else window_size
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
drop_path=dpr[i],
q_stride=self.q_stride if i in self.q_pool_blocks else None,
window_size=window_size,
norm_layer=norm_layer,
act_layer=act_layer,
)
embed_dim = dim_out
self.blocks.append(block)
if i in self.stage_ends:
self.feature_info += [
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
self.num_features = self.head_hidden_size = embed_dim
self.head = ClNormMlpClassifierHead(
embed_dim,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
norm_layer=norm_layer,
)
# Initialize everything
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.pos_embed_window is not None:
nn.init.trunc_normal_(self.pos_embed_window, std=0.02)
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale)
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
h, w = x.shape[1:3]
window_embed = self.pos_embed_window
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
pos_embed = pos_embed.permute(0, 2, 3, 1)
return x + pos_embed
def fix_init_weight(self):
def rescale(param, _layer_id):
param.div_(math.sqrt(2.0 * _layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@torch.jit.ignore
def no_weight_decay(self):
return ['pos_embed', 'pos_embed_window']
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict:
return dict(
stem=r'^pos_embed|pos_embed_window|patch_embed',
blocks=[(r'^blocks\.(\d+)', None)]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
coarse: Take coarse features (stage ends) if true, otherwise all block featrures
Returns:
"""
assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
x = self.patch_embed(x)
x = self._pos_embed(x)
intermediates = []
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
intermediates.append(x_out)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
coarse: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head:
self.head.reset(0, reset_other=prune_norm)
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x) # BHWC
x = self._pos_embed(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
return x
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.forward_head(x)
return x
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
"sam2_hiera_tiny.r224": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
input_size=(3, 224, 224), pool_size=(7, 7),
), # FIXME reduced res for testing
"sam2_hiera_tiny.r896": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
),
"sam2_hiera_small": _cfg(
hf_hub_id='facebook/sam2-hiera-small',
hf_hub_filename='sam2_hiera_small.pt',
),
"sam2_hiera_base_plus": _cfg(
hf_hub_id='facebook/sam2-hiera-base-plus',
hf_hub_filename='sam2_hiera_base_plus.pt',
),
"sam2_hiera_large": _cfg(
hf_hub_id='facebook/sam2-hiera-large',
hf_hub_filename='sam2_hiera_large.pt',
min_input_size=(3, 256, 256),
input_size=(3, 1024, 1024), pool_size=(32, 32),
),
"hieradet_small.untrained": _cfg(
num_classes=1000,
input_size=(3, 256, 256), pool_size=(8, 8),
),
})
def checkpoint_filter_fn(state_dict, model=None, prefix=''):
state_dict = state_dict.get('model', state_dict)
output = {}
for k, v in state_dict.items():
if k.startswith(prefix):
k = k.replace(prefix, '')
else:
continue
k = k.replace('mlp.layers.0', 'mlp.fc1')
k = k.replace('mlp.layers.1', 'mlp.fc2')
output[k] = v
return output
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
out_indices = kwargs.pop('out_indices', 4)
checkpoint_prefix = ''
if 'sam2' in variant:
# SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
# This is workaround loading with num_classes=0 w/o removing norm-layer.
kwargs.setdefault('pretrained_strict', False)
checkpoint_prefix = 'image_encoder.trunk.'
return build_model_with_cfg(
HieraDet,
variant,
pretrained,
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
@register_model
def sam2_hiera_tiny(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_base_plus(pretrained=False, **kwargs):
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_large(pretrained=False, **kwargs):
model_args = dict(
embed_dim=144,
num_heads=2,
stages=(2, 6, 36, 4),
global_att_blocks=(23, 33, 43),
window_spec=(8, 4, 16, 8),
)
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hieradet_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))
# @register_model
# def hieradet_base(pretrained=False, **kwargs):
# model_args = dict(window_spec=(8, 4, 16, 8))
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))