ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/models
/hieradet_sam2.py
import math | |
from copy import deepcopy | |
from functools import partial | |
from typing import Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.jit import Final | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \ | |
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn | |
from ._builder import build_model_with_cfg | |
from ._features import feature_take_indices | |
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv | |
from ._registry import generate_default_cfgs, register_model, register_model_deprecations | |
def window_partition(x, window_size: Tuple[int, int]): | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
x (tensor): input tokens with [B, H, W, C]. | |
window_size (int): window size. | |
Returns: | |
windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
(Hp, Wp): padded height and width before partition | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) | |
return windows | |
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]): | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
window_size (int): window size. | |
hw (Tuple): original height and width (H, W) before padding. | |
Returns: | |
x: unpartitioned sequences with [B, H, W, C]. | |
""" | |
H, W = hw | |
B = windows.shape[0] // (H * W // window_size[0] // window_size[1]) | |
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]: | |
pad_h = (window_size[0] - H % window_size[0]) % window_size[0] | |
pad_w = (window_size[1] - W % window_size[1]) % window_size[1] | |
Hp, Wp = H + pad_h, W + pad_w | |
return Hp, Wp, pad_h, pad_w | |
class MultiScaleAttention(nn.Module): | |
fused_attn: torch.jit.Final[bool] | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
num_heads: int, | |
q_pool: nn.Module = None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.dim_out = dim_out | |
self.num_heads = num_heads | |
head_dim = dim_out // num_heads | |
self.scale = head_dim ** -0.5 | |
self.fused_attn = use_fused_attn() | |
self.q_pool = q_pool | |
self.qkv = nn.Linear(dim, dim_out * 3) | |
self.proj = nn.Linear(dim_out, dim_out) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, H, W, _ = x.shape | |
# qkv with shape (B, H * W, 3, nHead, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) | |
# q, k, v with shape (B, H * W, nheads, C) | |
q, k, v = torch.unbind(qkv, 2) | |
# Q pooling (for downsample at stage changes) | |
if self.q_pool is not None: | |
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool | |
q = self.q_pool(q).permute(0, 2, 3, 1) | |
H, W = q.shape[1:3] # downsampled shape | |
q = q.reshape(B, H * W, self.num_heads, -1) | |
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose | |
q = q.transpose(1, 2) | |
k = k.transpose(1, 2) | |
v = v.transpose(1, 2) | |
if self.fused_attn: | |
x = F.scaled_dot_product_attention(q, k, v) | |
else: | |
q = q * self.scale | |
attn = q @ k.transpose(-1, -2) | |
attn = attn.softmax(dim=-1) | |
x = attn @ v | |
# Transpose back | |
x = x.transpose(1, 2).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
class MultiScaleBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
q_stride: Optional[Tuple[int, int]] = None, | |
norm_layer: Union[nn.Module, str] = "LayerNorm", | |
act_layer: Union[nn.Module, str] = "GELU", | |
window_size: int = 0, | |
init_values: Optional[float] = None, | |
drop_path: float = 0.0, | |
): | |
super().__init__() | |
norm_layer = get_norm_layer(norm_layer) | |
act_layer = get_act_layer(act_layer) | |
self.window_size = to_2tuple(window_size) | |
self.is_windowed = any(self.window_size) | |
self.dim = dim | |
self.dim_out = dim_out | |
self.q_stride = q_stride | |
if dim != dim_out: | |
self.proj = nn.Linear(dim, dim_out) | |
else: | |
self.proj = nn.Identity() | |
self.pool = None | |
if self.q_stride: | |
# note make a different instance for this Module so that it's not shared with attn module | |
self.pool = nn.MaxPool2d( | |
kernel_size=q_stride, | |
stride=q_stride, | |
ceil_mode=False, | |
) | |
self.norm1 = norm_layer(dim) | |
self.attn = MultiScaleAttention( | |
dim, | |
dim_out, | |
num_heads=num_heads, | |
q_pool=deepcopy(self.pool), | |
) | |
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim_out) | |
self.mlp = Mlp( | |
dim_out, | |
int(dim_out * mlp_ratio), | |
act_layer=act_layer, | |
) | |
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x # B, H, W, C | |
x = self.norm1(x) | |
# Skip connection | |
if self.dim != self.dim_out: | |
shortcut = self.proj(x) | |
if self.pool is not None: | |
shortcut = shortcut.permute(0, 3, 1, 2) | |
shortcut = self.pool(shortcut).permute(0, 2, 3, 1) | |
# Window partition | |
window_size = self.window_size | |
H, W = x.shape[1:3] | |
Hp, Wp = H, W # keep torchscript happy | |
if self.is_windowed: | |
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
x = window_partition(x, window_size) | |
# Window Attention + Q Pooling (if stage change) | |
x = self.attn(x) | |
if self.q_stride is not None: | |
# Shapes have changed due to Q pooling | |
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1]) | |
H, W = shortcut.shape[1:3] | |
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) | |
# Reverse window partition | |
if self.is_windowed: | |
x = window_unpartition(x, window_size, (Hp, Wp)) | |
x = x[:, :H, :W, :].contiguous() # unpad | |
x = shortcut + self.drop_path1(self.ls1(x)) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class HieraPatchEmbed(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__( | |
self, | |
kernel_size: Tuple[int, ...] = (7, 7), | |
stride: Tuple[int, ...] = (4, 4), | |
padding: Tuple[int, ...] = (3, 3), | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
): | |
""" | |
Args: | |
kernel_size (Tuple): kernel size of the projection layer. | |
stride (Tuple): stride of the projection layer. | |
padding (Tuple): padding size of the projection layer. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): embed_dim (int): Patch embedding dimension. | |
""" | |
super().__init__() | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj(x) | |
# B C H W -> B H W C | |
x = x.permute(0, 2, 3, 1) | |
return x | |
class HieraDet(nn.Module): | |
""" | |
Reference: https://arxiv.org/abs/2306.00989 | |
""" | |
def __init__( | |
self, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: str = 'avg', | |
embed_dim: int = 96, # initial embed dim | |
num_heads: int = 1, # initial number of heads | |
patch_kernel: Tuple[int, ...] = (7, 7), | |
patch_stride: Tuple[int, ...] = (4, 4), | |
patch_padding: Tuple[int, ...] = (3, 3), | |
patch_size: Optional[Tuple[int, ...]] = None, | |
q_pool: int = 3, # number of q_pool stages | |
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages | |
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage | |
dim_mul: float = 2.0, # dim_mul factor at stage shift | |
head_mul: float = 2.0, # head_mul factor at stage shift | |
global_pos_size: Tuple[int, int] = (7, 7), | |
# window size per stage, when not using global att. | |
window_spec: Tuple[int, ...] = ( | |
8, | |
4, | |
14, | |
7, | |
), | |
# global attn in these blocks | |
global_att_blocks: Tuple[int, ...] = ( | |
12, | |
16, | |
20, | |
), | |
init_values: Optional[float] = None, | |
weight_init: str = '', | |
fix_init: bool = True, | |
head_init_scale: float = 0.001, | |
drop_rate: float = 0.0, | |
drop_path_rate: float = 0.0, # stochastic depth | |
norm_layer: Union[nn.Module, str] = "LayerNorm", | |
act_layer: Union[nn.Module, str] = "GELU", | |
): | |
super().__init__() | |
norm_layer = get_norm_layer(norm_layer) | |
act_layer = get_act_layer(act_layer) | |
assert len(stages) == len(window_spec) | |
self.num_classes = num_classes | |
self.window_spec = window_spec | |
self.output_fmt = 'NHWC' | |
depth = sum(stages) | |
self.q_stride = q_stride | |
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] | |
assert 0 <= q_pool <= len(self.stage_ends[:-1]) | |
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] | |
if patch_size is not None: | |
# use a non-overlapping vit style patch embed | |
self.patch_embed = PatchEmbed( | |
img_size=None, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
output_fmt='NHWC', | |
dynamic_img_pad=True, | |
) | |
else: | |
self.patch_embed = HieraPatchEmbed( | |
kernel_size=patch_kernel, | |
stride=patch_stride, | |
padding=patch_padding, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
# Which blocks have global att? | |
self.global_att_blocks = global_att_blocks | |
# Windowed positional embedding (https://arxiv.org/abs/2311.05613) | |
self.global_pos_size = global_pos_size | |
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size)) | |
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
cur_stage = 0 | |
self.blocks = nn.Sequential() | |
self.feature_info = [] | |
for i in range(depth): | |
dim_out = embed_dim | |
# lags by a block, so first block of | |
# next stage uses an initial window size | |
# of previous stage and final window size of current stage | |
window_size = self.window_spec[cur_stage] | |
if self.global_att_blocks is not None: | |
window_size = 0 if i in self.global_att_blocks else window_size | |
if i - 1 in self.stage_ends: | |
dim_out = int(embed_dim * dim_mul) | |
num_heads = int(num_heads * head_mul) | |
cur_stage += 1 | |
block = MultiScaleBlock( | |
dim=embed_dim, | |
dim_out=dim_out, | |
num_heads=num_heads, | |
drop_path=dpr[i], | |
q_stride=self.q_stride if i in self.q_pool_blocks else None, | |
window_size=window_size, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
) | |
embed_dim = dim_out | |
self.blocks.append(block) | |
if i in self.stage_ends: | |
self.feature_info += [ | |
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] | |
self.num_features = self.head_hidden_size = embed_dim | |
self.head = ClNormMlpClassifierHead( | |
embed_dim, | |
num_classes, | |
pool_type=global_pool, | |
drop_rate=drop_rate, | |
norm_layer=norm_layer, | |
) | |
# Initialize everything | |
if self.pos_embed is not None: | |
nn.init.trunc_normal_(self.pos_embed, std=0.02) | |
if self.pos_embed_window is not None: | |
nn.init.trunc_normal_(self.pos_embed_window, std=0.02) | |
if weight_init != 'skip': | |
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit | |
init_fn = partial(init_fn, classifier_name='head.fc') | |
named_apply(init_fn, self) | |
if fix_init: | |
self.fix_init_weight() | |
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear): | |
self.head.fc.weight.data.mul_(head_init_scale) | |
self.head.fc.bias.data.mul_(head_init_scale) | |
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: | |
h, w = x.shape[1:3] | |
window_embed = self.pos_embed_window | |
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") | |
tile_h = pos_embed.shape[-2] // window_embed.shape[-2] | |
tile_w = pos_embed.shape[-1] // window_embed.shape[-1] | |
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w)) | |
pos_embed = pos_embed.permute(0, 2, 3, 1) | |
return x + pos_embed | |
def fix_init_weight(self): | |
def rescale(param, _layer_id): | |
param.div_(math.sqrt(2.0 * _layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def no_weight_decay(self): | |
return ['pos_embed', 'pos_embed_window'] | |
def group_matcher(self, coarse: bool = False) -> Dict: | |
return dict( | |
stem=r'^pos_embed|pos_embed_window|patch_embed', | |
blocks=[(r'^blocks\.(\d+)', None)] | |
) | |
def set_grad_checkpointing(self, enable: bool = True) -> None: | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): | |
self.num_classes = num_classes | |
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other) | |
def forward_intermediates( | |
self, | |
x: torch.Tensor, | |
indices: Optional[Union[int, List[int]]] = None, | |
norm: bool = False, | |
stop_early: bool = True, | |
output_fmt: str = 'NCHW', | |
intermediates_only: bool = False, | |
coarse: bool = True, | |
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: | |
""" Forward features that returns intermediates. | |
Args: | |
x: Input image tensor | |
indices: Take last n blocks if int, all if None, select matching indices if sequence | |
norm: Apply norm layer to all intermediates | |
stop_early: Stop iterating over blocks when last desired intermediate hit | |
output_fmt: Shape of intermediate feature outputs | |
intermediates_only: Only return intermediate features | |
coarse: Take coarse features (stage ends) if true, otherwise all block featrures | |
Returns: | |
""" | |
assert not norm, 'normalization of features not supported' | |
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' | |
if coarse: | |
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) | |
take_indices = [self.stage_ends[i] for i in take_indices] | |
max_index = self.stage_ends[max_index] | |
else: | |
take_indices, max_index = feature_take_indices(len(self.blocks), indices) | |
x = self.patch_embed(x) | |
x = self._pos_embed(x) | |
intermediates = [] | |
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript | |
blocks = self.blocks | |
else: | |
blocks = self.blocks[:max_index + 1] | |
for i, blk in enumerate(blocks): | |
x = blk(x) | |
if i in take_indices: | |
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x | |
intermediates.append(x_out) | |
if intermediates_only: | |
return intermediates | |
return x, intermediates | |
def prune_intermediate_layers( | |
self, | |
indices: Union[int, List[int]] = 1, | |
prune_norm: bool = False, | |
prune_head: bool = True, | |
coarse: bool = True, | |
): | |
""" Prune layers not required for specified intermediates. | |
""" | |
if coarse: | |
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) | |
max_index = self.stage_ends[max_index] | |
else: | |
take_indices, max_index = feature_take_indices(len(self.blocks), indices) | |
self.blocks = self.blocks[:max_index + 1] # truncate blocks | |
if prune_head: | |
self.head.reset(0, reset_other=prune_norm) | |
return take_indices | |
def forward_features(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.patch_embed(x) # BHWC | |
x = self._pos_embed(x) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: | |
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224. | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28), | |
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224), | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', | |
**kwargs | |
} | |
default_cfgs = generate_default_cfgs({ | |
"sam2_hiera_tiny.r224": _cfg( | |
hf_hub_id='facebook/sam2-hiera-tiny', | |
hf_hub_filename='sam2_hiera_tiny.pt', | |
input_size=(3, 224, 224), pool_size=(7, 7), | |
), # FIXME reduced res for testing | |
"sam2_hiera_tiny.r896": _cfg( | |
hf_hub_id='facebook/sam2-hiera-tiny', | |
hf_hub_filename='sam2_hiera_tiny.pt', | |
), | |
"sam2_hiera_small": _cfg( | |
hf_hub_id='facebook/sam2-hiera-small', | |
hf_hub_filename='sam2_hiera_small.pt', | |
), | |
"sam2_hiera_base_plus": _cfg( | |
hf_hub_id='facebook/sam2-hiera-base-plus', | |
hf_hub_filename='sam2_hiera_base_plus.pt', | |
), | |
"sam2_hiera_large": _cfg( | |
hf_hub_id='facebook/sam2-hiera-large', | |
hf_hub_filename='sam2_hiera_large.pt', | |
min_input_size=(3, 256, 256), | |
input_size=(3, 1024, 1024), pool_size=(32, 32), | |
), | |
"hieradet_small.untrained": _cfg( | |
num_classes=1000, | |
input_size=(3, 256, 256), pool_size=(8, 8), | |
), | |
}) | |
def checkpoint_filter_fn(state_dict, model=None, prefix=''): | |
state_dict = state_dict.get('model', state_dict) | |
output = {} | |
for k, v in state_dict.items(): | |
if k.startswith(prefix): | |
k = k.replace(prefix, '') | |
else: | |
continue | |
k = k.replace('mlp.layers.0', 'mlp.fc1') | |
k = k.replace('mlp.layers.1', 'mlp.fc2') | |
output[k] = v | |
return output | |
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet: | |
out_indices = kwargs.pop('out_indices', 4) | |
checkpoint_prefix = '' | |
if 'sam2' in variant: | |
# SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`) | |
# This is workaround loading with num_classes=0 w/o removing norm-layer. | |
kwargs.setdefault('pretrained_strict', False) | |
checkpoint_prefix = 'image_encoder.trunk.' | |
return build_model_with_cfg( | |
HieraDet, | |
variant, | |
pretrained, | |
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix), | |
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), | |
**kwargs, | |
) | |
def sam2_hiera_tiny(pretrained=False, **kwargs): | |
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9)) | |
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def sam2_hiera_small(pretrained=False, **kwargs): | |
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13)) | |
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def sam2_hiera_base_plus(pretrained=False, **kwargs): | |
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14)) | |
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def sam2_hiera_large(pretrained=False, **kwargs): | |
model_args = dict( | |
embed_dim=144, | |
num_heads=2, | |
stages=(2, 6, 36, 4), | |
global_att_blocks=(23, 33, 43), | |
window_spec=(8, 4, 16, 8), | |
) | |
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def hieradet_small(pretrained=False, **kwargs): | |
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5) | |
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs)) | |
# @register_model | |
# def hieradet_base(pretrained=False, **kwargs): | |
# model_args = dict(window_spec=(8, 4, 16, 8)) | |
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs)) | |