File size: 23,374 Bytes
e411e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import math
from copy import deepcopy
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit import Final

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
    get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn

from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
from ._registry import generate_default_cfgs, register_model, register_model_deprecations


def window_partition(x, window_size: Tuple[int, int]):
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.
    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
    """
    Window unpartition into original sequences and removing padding.
    Args:
        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        hw (Tuple): original height and width (H, W) before padding.
    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    H, W = hw
    B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
    x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
    pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
    pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
    Hp, Wp = H + pad_h, W + pad_w
    return Hp, Wp, pad_h, pad_w


class MultiScaleAttention(nn.Module):
    fused_attn: torch.jit.Final[bool]

    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        q_pool: nn.Module = None,
    ):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out
        self.num_heads = num_heads
        head_dim = dim_out // num_heads
        self.scale = head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.q_pool = q_pool
        self.qkv = nn.Linear(dim, dim_out * 3)
        self.proj = nn.Linear(dim_out, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape

        # qkv with shape (B, H * W, 3, nHead, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)

        # q, k, v with shape (B, H * W, nheads, C)
        q, k, v = torch.unbind(qkv, 2)

        # Q pooling (for downsample at stage changes)
        if self.q_pool is not None:
            q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2)  # to BCHW for pool
            q = self.q_pool(q).permute(0, 2, 3, 1)
            H, W = q.shape[1:3]  # downsampled shape
            q = q.reshape(B, H * W, self.num_heads, -1)

        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)
        if self.fused_attn:
            x = F.scaled_dot_product_attention(q, k, v)
        else:
            q = q * self.scale
            attn = q @ k.transpose(-1, -2)
            attn = attn.softmax(dim=-1)
            x = attn @ v

        # Transpose back
        x = x.transpose(1, 2).reshape(B, H, W, -1)

        x = self.proj(x)
        return x


class MultiScaleBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        q_stride: Optional[Tuple[int, int]] = None,
        norm_layer: Union[nn.Module, str] = "LayerNorm",
        act_layer: Union[nn.Module, str] = "GELU",
        window_size: int = 0,
        init_values: Optional[float] = None,
        drop_path: float = 0.0,
    ):
        super().__init__()
        norm_layer = get_norm_layer(norm_layer)
        act_layer = get_act_layer(act_layer)
        self.window_size = to_2tuple(window_size)
        self.is_windowed = any(self.window_size)
        self.dim = dim
        self.dim_out = dim_out
        self.q_stride = q_stride

        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)
        else:
            self.proj = nn.Identity()
        self.pool = None
        if self.q_stride:
            # note make a different instance for this Module so that it's not shared with attn module
            self.pool = nn.MaxPool2d(
                kernel_size=q_stride,
                stride=q_stride,
                ceil_mode=False,
            )

        self.norm1 = norm_layer(dim)
        self.attn = MultiScaleAttention(
            dim,
            dim_out,
            num_heads=num_heads,
            q_pool=deepcopy(self.pool),
        )
        self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim_out)
        self.mlp = Mlp(
            dim_out,
            int(dim_out * mlp_ratio),
            act_layer=act_layer,
        )
        self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x  # B, H, W, C
        x = self.norm1(x)

        # Skip connection
        if self.dim != self.dim_out:
            shortcut = self.proj(x)
            if self.pool is not None:
                shortcut = shortcut.permute(0, 3, 1, 2)
                shortcut = self.pool(shortcut).permute(0, 2, 3, 1)

        # Window partition
        window_size = self.window_size
        H, W = x.shape[1:3]
        Hp, Wp = H, W  # keep torchscript happy
        if self.is_windowed:
            Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
            x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
            x = window_partition(x, window_size)

        # Window Attention + Q Pooling (if stage change)
        x = self.attn(x)
        if self.q_stride is not None:
            # Shapes have changed due to Q pooling
            window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
            H, W = shortcut.shape[1:3]
            Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)

        # Reverse window partition
        if self.is_windowed:
            x = window_unpartition(x, window_size, (Hp, Wp))
            x = x[:, :H, :W, :].contiguous()  # unpad

        x = shortcut + self.drop_path1(self.ls1(x))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class HieraPatchEmbed(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(
        self,
        kernel_size: Tuple[int, ...] = (7, 7),
        stride: Tuple[int, ...] = (4, 4),
        padding: Tuple[int, ...] = (3, 3),
        in_chans: int = 3,
        embed_dim: int = 768,
    ):
        """
        Args:
            kernel_size (Tuple): kernel size of the projection layer.
            stride (Tuple): stride of the projection layer.
            padding (Tuple): padding size of the projection layer.
            in_chans (int): Number of input image channels.
            embed_dim (int):  embed_dim (int): Patch embedding dimension.
        """
        super().__init__()
        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x


class HieraDet(nn.Module):
    """
    Reference: https://arxiv.org/abs/2306.00989
    """

    def __init__(
            self,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            embed_dim: int = 96,  # initial embed dim
            num_heads: int = 1,  # initial number of heads
            patch_kernel: Tuple[int, ...] = (7, 7),
            patch_stride: Tuple[int, ...] = (4, 4),
            patch_padding: Tuple[int, ...] = (3, 3),
            patch_size: Optional[Tuple[int, ...]] = None,
            q_pool: int = 3,  # number of q_pool stages
            q_stride: Tuple[int, int] = (2, 2),  # downsample stride bet. stages
            stages: Tuple[int, ...] = (2, 3, 16, 3),  # blocks per stage
            dim_mul: float = 2.0,  # dim_mul factor at stage shift
            head_mul: float = 2.0,  # head_mul factor at stage shift
            global_pos_size: Tuple[int, int] = (7, 7),
            # window size per stage, when not using global att.
            window_spec: Tuple[int, ...] = (
                8,
                4,
                14,
                7,
            ),
            # global attn in these blocks
            global_att_blocks: Tuple[int, ...] = (
                12,
                16,
                20,
            ),
            init_values: Optional[float] = None,
            weight_init: str = '',
            fix_init: bool = True,
            head_init_scale: float = 0.001,
            drop_rate: float = 0.0,
            drop_path_rate: float = 0.0,  # stochastic depth
            norm_layer: Union[nn.Module, str] = "LayerNorm",
            act_layer: Union[nn.Module, str] = "GELU",
    ):
        super().__init__()
        norm_layer = get_norm_layer(norm_layer)
        act_layer = get_act_layer(act_layer)
        assert len(stages) == len(window_spec)
        self.num_classes = num_classes
        self.window_spec = window_spec
        self.output_fmt = 'NHWC'

        depth = sum(stages)
        self.q_stride = q_stride
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
        assert 0 <= q_pool <= len(self.stage_ends[:-1])
        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]

        if patch_size is not None:
            # use a non-overlapping vit style patch embed
            self.patch_embed = PatchEmbed(
                img_size=None,
                patch_size=patch_size,
                in_chans=in_chans,
                embed_dim=embed_dim,
                output_fmt='NHWC',
                dynamic_img_pad=True,
            )
        else:
            self.patch_embed = HieraPatchEmbed(
                kernel_size=patch_kernel,
                stride=patch_stride,
                padding=patch_padding,
                in_chans=in_chans,
                embed_dim=embed_dim,
            )
        # Which blocks have global att?
        self.global_att_blocks = global_att_blocks

        # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
        self.global_pos_size = global_pos_size
        self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
        self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        cur_stage = 0
        self.blocks = nn.Sequential()
        self.feature_info = []
        for i in range(depth):
            dim_out = embed_dim
            # lags by a block, so first block of
            # next stage uses an initial window size
            # of previous stage and final window size of current stage
            window_size = self.window_spec[cur_stage]

            if self.global_att_blocks is not None:
                window_size = 0 if i in self.global_att_blocks else window_size

            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1

            block = MultiScaleBlock(
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=num_heads,
                drop_path=dpr[i],
                q_stride=self.q_stride if i in self.q_pool_blocks else None,
                window_size=window_size,
                norm_layer=norm_layer,
                act_layer=act_layer,
            )

            embed_dim = dim_out
            self.blocks.append(block)
            if i in self.stage_ends:
                self.feature_info += [
                    dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]

        self.num_features = self.head_hidden_size = embed_dim
        self.head = ClNormMlpClassifierHead(
            embed_dim,
            num_classes,
            pool_type=global_pool,
            drop_rate=drop_rate,
            norm_layer=norm_layer,
        )

        # Initialize everything
        if self.pos_embed is not None:
            nn.init.trunc_normal_(self.pos_embed, std=0.02)

        if self.pos_embed_window is not None:
            nn.init.trunc_normal_(self.pos_embed_window, std=0.02)

        if weight_init != 'skip':
            init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
            init_fn = partial(init_fn, classifier_name='head.fc')
            named_apply(init_fn, self)

        if fix_init:
            self.fix_init_weight()

        if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
            self.head.fc.weight.data.mul_(head_init_scale)
            self.head.fc.bias.data.mul_(head_init_scale)

    def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
        h, w = x.shape[1:3]
        window_embed = self.pos_embed_window
        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
        tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
        tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
        pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
        pos_embed = pos_embed.permute(0, 2, 3, 1)
        return x + pos_embed

    def fix_init_weight(self):
        def rescale(param, _layer_id):
            param.div_(math.sqrt(2.0 * _layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    @torch.jit.ignore
    def no_weight_decay(self):
        return ['pos_embed', 'pos_embed_window']

    @torch.jit.ignore
    def group_matcher(self, coarse: bool = False) -> Dict:
        return dict(
            stem=r'^pos_embed|pos_embed_window|patch_embed',
            blocks=[(r'^blocks\.(\d+)', None)]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True) -> None:
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
        self.num_classes = num_classes
        self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int]]] = None,
            norm: bool = False,
            stop_early: bool = True,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
            coarse: bool = True,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if int, all if None, select matching indices if sequence
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
            coarse: Take coarse features (stage ends) if true, otherwise all block featrures
        Returns:

        """
        assert not norm, 'normalization of features not supported'
        assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
        if coarse:
            take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
            take_indices = [self.stage_ends[i] for i in take_indices]
            max_index = self.stage_ends[max_index]
        else:
            take_indices, max_index = feature_take_indices(len(self.blocks), indices)

        x = self.patch_embed(x)
        x = self._pos_embed(x)

        intermediates = []
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            blocks = self.blocks
        else:
            blocks = self.blocks[:max_index + 1]
        for i, blk in enumerate(blocks):
            x = blk(x)
            if i in take_indices:
                x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
                intermediates.append(x_out)

        if intermediates_only:
            return intermediates

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
            coarse: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        if coarse:
            take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
            max_index = self.stage_ends[max_index]
        else:
            take_indices, max_index = feature_take_indices(len(self.blocks), indices)
        self.blocks = self.blocks[:max_index + 1]  # truncate blocks
        if prune_head:
            self.head.reset(0, reset_other=prune_norm)
        return take_indices

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)  # BHWC
        x = self._pos_embed(x)
        for i, blk in enumerate(self.blocks):
            x = blk(x)
        return x

    def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
        x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
        return x

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
        'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    "sam2_hiera_tiny.r224": _cfg(
        hf_hub_id='facebook/sam2-hiera-tiny',
        hf_hub_filename='sam2_hiera_tiny.pt',
        input_size=(3, 224, 224), pool_size=(7, 7),
    ),  # FIXME reduced res for testing
    "sam2_hiera_tiny.r896": _cfg(
        hf_hub_id='facebook/sam2-hiera-tiny',
        hf_hub_filename='sam2_hiera_tiny.pt',
    ),
    "sam2_hiera_small": _cfg(
        hf_hub_id='facebook/sam2-hiera-small',
        hf_hub_filename='sam2_hiera_small.pt',
    ),
    "sam2_hiera_base_plus": _cfg(
        hf_hub_id='facebook/sam2-hiera-base-plus',
        hf_hub_filename='sam2_hiera_base_plus.pt',
    ),
    "sam2_hiera_large": _cfg(
        hf_hub_id='facebook/sam2-hiera-large',
        hf_hub_filename='sam2_hiera_large.pt',
        min_input_size=(3, 256, 256),
        input_size=(3, 1024, 1024), pool_size=(32, 32),
    ),
    "hieradet_small.untrained": _cfg(
        num_classes=1000,
        input_size=(3, 256, 256), pool_size=(8, 8),
    ),
})


def checkpoint_filter_fn(state_dict, model=None, prefix=''):
    state_dict = state_dict.get('model', state_dict)

    output = {}
    for k, v in state_dict.items():
        if k.startswith(prefix):
            k = k.replace(prefix, '')
        else:
            continue
        k = k.replace('mlp.layers.0', 'mlp.fc1')
        k = k.replace('mlp.layers.1', 'mlp.fc2')
        output[k] = v
    return output


def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
    out_indices = kwargs.pop('out_indices', 4)
    checkpoint_prefix = ''
    if 'sam2' in variant:
        # SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
        # This is workaround loading with num_classes=0 w/o removing norm-layer.
        kwargs.setdefault('pretrained_strict', False)
        checkpoint_prefix = 'image_encoder.trunk.'
    return build_model_with_cfg(
        HieraDet,
        variant,
        pretrained,
        pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )


@register_model
def sam2_hiera_tiny(pretrained=False, **kwargs):
    model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
    return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def sam2_hiera_small(pretrained=False, **kwargs):
    model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
    return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def sam2_hiera_base_plus(pretrained=False, **kwargs):
    model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
    return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def sam2_hiera_large(pretrained=False, **kwargs):
    model_args = dict(
        embed_dim=144,
        num_heads=2,
        stages=(2, 6, 36, 4),
        global_att_blocks=(23, 33, 43),
        window_spec=(8, 4, 16, 8),
    )
    return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hieradet_small(pretrained=False, **kwargs):
    model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
    return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))


# @register_model
# def hieradet_base(pretrained=False, **kwargs):
#     model_args = dict(window_spec=(8, 4, 16, 8))
#     return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))