File size: 23,374 Bytes
e411e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import math
from copy import deepcopy
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit import Final
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
def window_partition(x, window_size: Tuple[int, int]):
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
"""
Window unpartition into original sequences and removing padding.
Args:
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
H, W = hw
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
Hp, Wp = H + pad_h, W + pad_w
return Hp, Wp, pad_h, pad_w
class MultiScaleAttention(nn.Module):
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
q_pool: nn.Module = None,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.q_pool = q_pool
self.qkv = nn.Linear(dim, dim_out * 3)
self.proj = nn.Linear(dim_out, dim_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (B, H * W, 3, nHead, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
# q, k, v with shape (B, H * W, nheads, C)
q, k, v = torch.unbind(qkv, 2)
# Q pooling (for downsample at stage changes)
if self.q_pool is not None:
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
q = self.q_pool(q).permute(0, 2, 3, 1)
H, W = q.shape[1:3] # downsampled shape
q = q.reshape(B, H * W, self.num_heads, -1)
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if self.fused_attn:
x = F.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = q @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = attn @ v
# Transpose back
x = x.transpose(1, 2).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
mlp_ratio: float = 4.0,
q_stride: Optional[Tuple[int, int]] = None,
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
window_size: int = 0,
init_values: Optional[float] = None,
drop_path: float = 0.0,
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
self.window_size = to_2tuple(window_size)
self.is_windowed = any(self.window_size)
self.dim = dim
self.dim_out = dim_out
self.q_stride = q_stride
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
else:
self.proj = nn.Identity()
self.pool = None
if self.q_stride:
# note make a different instance for this Module so that it's not shared with attn module
self.pool = nn.MaxPool2d(
kernel_size=q_stride,
stride=q_stride,
ceil_mode=False,
)
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
q_pool=deepcopy(self.pool),
)
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
dim_out,
int(dim_out * mlp_ratio),
act_layer=act_layer,
)
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x # B, H, W, C
x = self.norm1(x)
# Skip connection
if self.dim != self.dim_out:
shortcut = self.proj(x)
if self.pool is not None:
shortcut = shortcut.permute(0, 3, 1, 2)
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
# Window partition
window_size = self.window_size
H, W = x.shape[1:3]
Hp, Wp = H, W # keep torchscript happy
if self.is_windowed:
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
x = window_partition(x, window_size)
# Window Attention + Q Pooling (if stage change)
x = self.attn(x)
if self.q_stride is not None:
# Shapes have changed due to Q pooling
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
H, W = shortcut.shape[1:3]
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
# Reverse window partition
if self.is_windowed:
x = window_unpartition(x, window_size, (Hp, Wp))
x = x[:, :H, :W, :].contiguous() # unpad
x = shortcut + self.drop_path1(self.ls1(x))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class HieraPatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, ...] = (7, 7),
stride: Tuple[int, ...] = (4, 4),
padding: Tuple[int, ...] = (3, 3),
in_chans: int = 3,
embed_dim: int = 768,
):
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
class HieraDet(nn.Module):
"""
Reference: https://arxiv.org/abs/2306.00989
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
patch_kernel: Tuple[int, ...] = (7, 7),
patch_stride: Tuple[int, ...] = (4, 4),
patch_padding: Tuple[int, ...] = (3, 3),
patch_size: Optional[Tuple[int, ...]] = None,
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
dim_mul: float = 2.0, # dim_mul factor at stage shift
head_mul: float = 2.0, # head_mul factor at stage shift
global_pos_size: Tuple[int, int] = (7, 7),
# window size per stage, when not using global att.
window_spec: Tuple[int, ...] = (
8,
4,
14,
7,
),
# global attn in these blocks
global_att_blocks: Tuple[int, ...] = (
12,
16,
20,
),
init_values: Optional[float] = None,
weight_init: str = '',
fix_init: bool = True,
head_init_scale: float = 0.001,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0, # stochastic depth
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
assert len(stages) == len(window_spec)
self.num_classes = num_classes
self.window_spec = window_spec
self.output_fmt = 'NHWC'
depth = sum(stages)
self.q_stride = q_stride
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
assert 0 <= q_pool <= len(self.stage_ends[:-1])
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
if patch_size is not None:
# use a non-overlapping vit style patch embed
self.patch_embed = PatchEmbed(
img_size=None,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
output_fmt='NHWC',
dynamic_img_pad=True,
)
else:
self.patch_embed = HieraPatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
# Which blocks have global att?
self.global_att_blocks = global_att_blocks
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
self.global_pos_size = global_pos_size
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
cur_stage = 0
self.blocks = nn.Sequential()
self.feature_info = []
for i in range(depth):
dim_out = embed_dim
# lags by a block, so first block of
# next stage uses an initial window size
# of previous stage and final window size of current stage
window_size = self.window_spec[cur_stage]
if self.global_att_blocks is not None:
window_size = 0 if i in self.global_att_blocks else window_size
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
drop_path=dpr[i],
q_stride=self.q_stride if i in self.q_pool_blocks else None,
window_size=window_size,
norm_layer=norm_layer,
act_layer=act_layer,
)
embed_dim = dim_out
self.blocks.append(block)
if i in self.stage_ends:
self.feature_info += [
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
self.num_features = self.head_hidden_size = embed_dim
self.head = ClNormMlpClassifierHead(
embed_dim,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
norm_layer=norm_layer,
)
# Initialize everything
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.pos_embed_window is not None:
nn.init.trunc_normal_(self.pos_embed_window, std=0.02)
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale)
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
h, w = x.shape[1:3]
window_embed = self.pos_embed_window
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
pos_embed = pos_embed.permute(0, 2, 3, 1)
return x + pos_embed
def fix_init_weight(self):
def rescale(param, _layer_id):
param.div_(math.sqrt(2.0 * _layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@torch.jit.ignore
def no_weight_decay(self):
return ['pos_embed', 'pos_embed_window']
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict:
return dict(
stem=r'^pos_embed|pos_embed_window|patch_embed',
blocks=[(r'^blocks\.(\d+)', None)]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
coarse: Take coarse features (stage ends) if true, otherwise all block featrures
Returns:
"""
assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
x = self.patch_embed(x)
x = self._pos_embed(x)
intermediates = []
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
intermediates.append(x_out)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
coarse: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head:
self.head.reset(0, reset_other=prune_norm)
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x) # BHWC
x = self._pos_embed(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
return x
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.forward_head(x)
return x
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
"sam2_hiera_tiny.r224": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
input_size=(3, 224, 224), pool_size=(7, 7),
), # FIXME reduced res for testing
"sam2_hiera_tiny.r896": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
),
"sam2_hiera_small": _cfg(
hf_hub_id='facebook/sam2-hiera-small',
hf_hub_filename='sam2_hiera_small.pt',
),
"sam2_hiera_base_plus": _cfg(
hf_hub_id='facebook/sam2-hiera-base-plus',
hf_hub_filename='sam2_hiera_base_plus.pt',
),
"sam2_hiera_large": _cfg(
hf_hub_id='facebook/sam2-hiera-large',
hf_hub_filename='sam2_hiera_large.pt',
min_input_size=(3, 256, 256),
input_size=(3, 1024, 1024), pool_size=(32, 32),
),
"hieradet_small.untrained": _cfg(
num_classes=1000,
input_size=(3, 256, 256), pool_size=(8, 8),
),
})
def checkpoint_filter_fn(state_dict, model=None, prefix=''):
state_dict = state_dict.get('model', state_dict)
output = {}
for k, v in state_dict.items():
if k.startswith(prefix):
k = k.replace(prefix, '')
else:
continue
k = k.replace('mlp.layers.0', 'mlp.fc1')
k = k.replace('mlp.layers.1', 'mlp.fc2')
output[k] = v
return output
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
out_indices = kwargs.pop('out_indices', 4)
checkpoint_prefix = ''
if 'sam2' in variant:
# SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
# This is workaround loading with num_classes=0 w/o removing norm-layer.
kwargs.setdefault('pretrained_strict', False)
checkpoint_prefix = 'image_encoder.trunk.'
return build_model_with_cfg(
HieraDet,
variant,
pretrained,
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
@register_model
def sam2_hiera_tiny(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_base_plus(pretrained=False, **kwargs):
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_large(pretrained=False, **kwargs):
model_args = dict(
embed_dim=144,
num_heads=2,
stages=(2, 6, 36, 4),
global_att_blocks=(23, 33, 43),
window_spec=(8, 4, 16, 8),
)
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hieradet_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))
# @register_model
# def hieradet_base(pretrained=False, **kwargs):
# model_args = dict(window_spec=(8, 4, 16, 8))
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))
|