import math from copy import deepcopy from functools import partial from typing import Callable, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.jit import Final from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \ get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv from ._registry import generate_default_cfgs, register_model, register_model_deprecations def window_partition(x, window_size: Tuple[int, int]): """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]): """ Window unpartition into original sequences and removing padding. Args: x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ H, W = hw B = windows.shape[0] // (H * W // window_size[0] // window_size[1]) x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]: pad_h = (window_size[0] - H % window_size[0]) % window_size[0] pad_w = (window_size[1] - W % window_size[1]) % window_size[1] Hp, Wp = H + pad_h, W + pad_w return Hp, Wp, pad_h, pad_w class MultiScaleAttention(nn.Module): fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module = None, ): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads head_dim = dim_out // num_heads self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn() self.q_pool = q_pool self.qkv = nn.Linear(dim, dim_out * 3) self.proj = nn.Linear(dim_out, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (B, H * W, 3, nHead, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) # q, k, v with shape (B, H * W, nheads, C) q, k, v = torch.unbind(qkv, 2) # Q pooling (for downsample at stage changes) if self.q_pool is not None: q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool q = self.q_pool(q).permute(0, 2, 3, 1) H, W = q.shape[1:3] # downsampled shape q = q.reshape(B, H * W, self.num_heads, -1) # Torch's SDPA expects [B, nheads, H*W, C] so we transpose q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) if self.fused_attn: x = F.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-1, -2) attn = attn.softmax(dim=-1) x = attn @ v # Transpose back x = x.transpose(1, 2).reshape(B, H, W, -1) x = self.proj(x) return x class MultiScaleBlock(nn.Module): def __init__( self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float = 4.0, q_stride: Optional[Tuple[int, int]] = None, norm_layer: Union[nn.Module, str] = "LayerNorm", act_layer: Union[nn.Module, str] = "GELU", window_size: int = 0, init_values: Optional[float] = None, drop_path: float = 0.0, ): super().__init__() norm_layer = get_norm_layer(norm_layer) act_layer = get_act_layer(act_layer) self.window_size = to_2tuple(window_size) self.is_windowed = any(self.window_size) self.dim = dim self.dim_out = dim_out self.q_stride = q_stride if dim != dim_out: self.proj = nn.Linear(dim, dim_out) else: self.proj = nn.Identity() self.pool = None if self.q_stride: # note make a different instance for this Module so that it's not shared with attn module self.pool = nn.MaxPool2d( kernel_size=q_stride, stride=q_stride, ceil_mode=False, ) self.norm1 = norm_layer(dim) self.attn = MultiScaleAttention( dim, dim_out, num_heads=num_heads, q_pool=deepcopy(self.pool), ) self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = Mlp( dim_out, int(dim_out * mlp_ratio), act_layer=act_layer, ) self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # B, H, W, C x = self.norm1(x) # Skip connection if self.dim != self.dim_out: shortcut = self.proj(x) if self.pool is not None: shortcut = shortcut.permute(0, 3, 1, 2) shortcut = self.pool(shortcut).permute(0, 2, 3, 1) # Window partition window_size = self.window_size H, W = x.shape[1:3] Hp, Wp = H, W # keep torchscript happy if self.is_windowed: Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) x = window_partition(x, window_size) # Window Attention + Q Pooling (if stage change) x = self.attn(x) if self.q_stride is not None: # Shapes have changed due to Q pooling window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1]) H, W = shortcut.shape[1:3] Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) # Reverse window partition if self.is_windowed: x = window_unpartition(x, window_size, (Hp, Wp)) x = x[:, :H, :W, :].contiguous() # unpad x = shortcut + self.drop_path1(self.ls1(x)) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class HieraPatchEmbed(nn.Module): """ Image to Patch Embedding. """ def __init__( self, kernel_size: Tuple[int, ...] = (7, 7), stride: Tuple[int, ...] = (4, 4), padding: Tuple[int, ...] = (3, 3), in_chans: int = 3, embed_dim: int = 768, ): """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): embed_dim (int): Patch embedding dimension. """ super().__init__() self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) # B C H W -> B H W C x = x.permute(0, 2, 3, 1) return x class HieraDet(nn.Module): """ Reference: https://arxiv.org/abs/2306.00989 """ def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 96, # initial embed dim num_heads: int = 1, # initial number of heads patch_kernel: Tuple[int, ...] = (7, 7), patch_stride: Tuple[int, ...] = (4, 4), patch_padding: Tuple[int, ...] = (3, 3), patch_size: Optional[Tuple[int, ...]] = None, q_pool: int = 3, # number of q_pool stages q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage dim_mul: float = 2.0, # dim_mul factor at stage shift head_mul: float = 2.0, # head_mul factor at stage shift global_pos_size: Tuple[int, int] = (7, 7), # window size per stage, when not using global att. window_spec: Tuple[int, ...] = ( 8, 4, 14, 7, ), # global attn in these blocks global_att_blocks: Tuple[int, ...] = ( 12, 16, 20, ), init_values: Optional[float] = None, weight_init: str = '', fix_init: bool = True, head_init_scale: float = 0.001, drop_rate: float = 0.0, drop_path_rate: float = 0.0, # stochastic depth norm_layer: Union[nn.Module, str] = "LayerNorm", act_layer: Union[nn.Module, str] = "GELU", ): super().__init__() norm_layer = get_norm_layer(norm_layer) act_layer = get_act_layer(act_layer) assert len(stages) == len(window_spec) self.num_classes = num_classes self.window_spec = window_spec self.output_fmt = 'NHWC' depth = sum(stages) self.q_stride = q_stride self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] assert 0 <= q_pool <= len(self.stage_ends[:-1]) self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] if patch_size is not None: # use a non-overlapping vit style patch embed self.patch_embed = PatchEmbed( img_size=None, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, output_fmt='NHWC', dynamic_img_pad=True, ) else: self.patch_embed = HieraPatchEmbed( kernel_size=patch_kernel, stride=patch_stride, padding=patch_padding, in_chans=in_chans, embed_dim=embed_dim, ) # Which blocks have global att? self.global_att_blocks = global_att_blocks # Windowed positional embedding (https://arxiv.org/abs/2311.05613) self.global_pos_size = global_pos_size self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size)) self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule cur_stage = 0 self.blocks = nn.Sequential() self.feature_info = [] for i in range(depth): dim_out = embed_dim # lags by a block, so first block of # next stage uses an initial window size # of previous stage and final window size of current stage window_size = self.window_spec[cur_stage] if self.global_att_blocks is not None: window_size = 0 if i in self.global_att_blocks else window_size if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 block = MultiScaleBlock( dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size, norm_layer=norm_layer, act_layer=act_layer, ) embed_dim = dim_out self.blocks.append(block) if i in self.stage_ends: self.feature_info += [ dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] self.num_features = self.head_hidden_size = embed_dim self.head = ClNormMlpClassifierHead( embed_dim, num_classes, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer, ) # Initialize everything if self.pos_embed is not None: nn.init.trunc_normal_(self.pos_embed, std=0.02) if self.pos_embed_window is not None: nn.init.trunc_normal_(self.pos_embed_window, std=0.02) if weight_init != 'skip': init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit init_fn = partial(init_fn, classifier_name='head.fc') named_apply(init_fn, self) if fix_init: self.fix_init_weight() if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear): self.head.fc.weight.data.mul_(head_init_scale) self.head.fc.bias.data.mul_(head_init_scale) def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: h, w = x.shape[1:3] window_embed = self.pos_embed_window pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") tile_h = pos_embed.shape[-2] // window_embed.shape[-2] tile_w = pos_embed.shape[-1] // window_embed.shape[-1] pos_embed = pos_embed + window_embed.tile((tile_h, tile_w)) pos_embed = pos_embed.permute(0, 2, 3, 1) return x + pos_embed def fix_init_weight(self): def rescale(param, _layer_id): param.div_(math.sqrt(2.0 * _layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @torch.jit.ignore def no_weight_decay(self): return ['pos_embed', 'pos_embed_window'] @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict: return dict( stem=r'^pos_embed|pos_embed_window|patch_embed', blocks=[(r'^blocks\.(\d+)', None)] ) @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True) -> None: self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other) def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = True, output_fmt: str = 'NCHW', intermediates_only: bool = False, coarse: bool = True, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features coarse: Take coarse features (stage ends) if true, otherwise all block featrures Returns: """ assert not norm, 'normalization of features not supported' assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' if coarse: take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) take_indices = [self.stage_ends[i] for i in take_indices] max_index = self.stage_ends[max_index] else: take_indices, max_index = feature_take_indices(len(self.blocks), indices) x = self.patch_embed(x) x = self._pos_embed(x) intermediates = [] if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): x = blk(x) if i in take_indices: x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x intermediates.append(x_out) if intermediates_only: return intermediates return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, coarse: bool = True, ): """ Prune layers not required for specified intermediates. """ if coarse: take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) max_index = self.stage_ends[max_index] else: take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_head: self.head.reset(0, reset_other=prune_norm) return take_indices def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) # BHWC x = self._pos_embed(x) for i, blk in enumerate(self.blocks): x = blk(x) return x def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) return x def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x # NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224. def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28), 'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224), 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ "sam2_hiera_tiny.r224": _cfg( hf_hub_id='facebook/sam2-hiera-tiny', hf_hub_filename='sam2_hiera_tiny.pt', input_size=(3, 224, 224), pool_size=(7, 7), ), # FIXME reduced res for testing "sam2_hiera_tiny.r896": _cfg( hf_hub_id='facebook/sam2-hiera-tiny', hf_hub_filename='sam2_hiera_tiny.pt', ), "sam2_hiera_small": _cfg( hf_hub_id='facebook/sam2-hiera-small', hf_hub_filename='sam2_hiera_small.pt', ), "sam2_hiera_base_plus": _cfg( hf_hub_id='facebook/sam2-hiera-base-plus', hf_hub_filename='sam2_hiera_base_plus.pt', ), "sam2_hiera_large": _cfg( hf_hub_id='facebook/sam2-hiera-large', hf_hub_filename='sam2_hiera_large.pt', min_input_size=(3, 256, 256), input_size=(3, 1024, 1024), pool_size=(32, 32), ), "hieradet_small.untrained": _cfg( num_classes=1000, input_size=(3, 256, 256), pool_size=(8, 8), ), }) def checkpoint_filter_fn(state_dict, model=None, prefix=''): state_dict = state_dict.get('model', state_dict) output = {} for k, v in state_dict.items(): if k.startswith(prefix): k = k.replace(prefix, '') else: continue k = k.replace('mlp.layers.0', 'mlp.fc1') k = k.replace('mlp.layers.1', 'mlp.fc2') output[k] = v return output def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet: out_indices = kwargs.pop('out_indices', 4) checkpoint_prefix = '' if 'sam2' in variant: # SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`) # This is workaround loading with num_classes=0 w/o removing norm-layer. kwargs.setdefault('pretrained_strict', False) checkpoint_prefix = 'image_encoder.trunk.' return build_model_with_cfg( HieraDet, variant, pretrained, pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix), feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) @register_model def sam2_hiera_tiny(pretrained=False, **kwargs): model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9)) return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def sam2_hiera_small(pretrained=False, **kwargs): model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13)) return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def sam2_hiera_base_plus(pretrained=False, **kwargs): model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14)) return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def sam2_hiera_large(pretrained=False, **kwargs): model_args = dict( embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), global_att_blocks=(23, 33, 43), window_spec=(8, 4, 16, 8), ) return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def hieradet_small(pretrained=False, **kwargs): model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5) return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs)) # @register_model # def hieradet_base(pretrained=False, **kwargs): # model_args = dict(window_spec=(8, 4, 16, 8)) # return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))