The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {'trajectories': ('imagefolder', {}), 'metadata': ('json', {})}
Error code:   FileFormatMismatchBetweenSplitsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ManiSkill-HAB PrepareGroceries Dataset

Paper | Website | Code | Models | (Full) Dataset | Supplementary

Whole-body, low-level control/manipulation demonstration dataset for ManiSkill-HAB PrepareGroceries.

Dataset Details

Dataset Description

Demonstration dataset for ManiSkill-HAB PrepareGroceries. Each subtask/object combination (e.g pick 002_master_chef_can) has 1000 successful episodes (200 samples/demonstration) gathered using RL policies fitered for safe robot behavior with a rule-based event labeling system.

PrepareGroceries contains the Pick and Place subtasks. Relative to the other MS-HAB long-horizon tasks (TidyHouse, SetTable), PrepareGroceries Pick and PrepareGroceries Place are hard difficulty (on a scale of easy-medium-hard).

Related Datasets

Full information about the MS-HAB datasets (size, difficulty, links, etc), including the other long horizon tasks, are available on the ManiSkill-HAB website.

Uses

Direct Use

This dataset can be used to train vision-based learning from demonstrations and imitation learning methods, which can be evaluated with the MS-HAB environments. This dataset may be useful as synthetic data for computer vision tasks as well.

Out-of-Scope Use

While blind state-based policies can be trained on this dataset, it is recommended to train vision-based policies to handle collisions and obstructions.

Dataset Structure

Each subtask/object combination has files [SUBTASK]/[OBJECT].json and [SUBTASK]/[OBJECT].h5. The JSON file contains episode metadata, event labels, etc, while the HDF5 file contains the demonstration data.

Dataset Creation

The data is gathered using RL policies fitered for safe robot behavior with a rule-based event labeling system.

Bias, Risks, and Limitations

The dataset is purely synthetic.

While MS-HAB supports high-quality ray-traced rendering, this dataset uses ManiSkill's default rendering for data generation due to efficiency. However, users can generate their own data with the data generation code.

Citation

@article{shukla2024maniskillhab,
    author		 = {Arth Shukla and Stone Tao and Hao Su},
    title        = {ManiSkill-HAB: A Benchmark for Low-Level Manipulation in Home Rearrangement Tasks},
    journal      = {CoRR},
    volume       = {abs/2412.13211},
    year         = {2024},
    url          = {https://doi.org/10.48550/arXiv.2412.13211},
    doi          = {10.48550/ARXIV.2412.13211},
    eprinttype   = {arXiv},
    eprint       = {2412.13211},
    timestamp    = {Mon, 09 Dec 2024 01:29:24 +0100},
    biburl       = {https://dblp.org/rec/journals/corr/abs-2412-13211.bib},
    bibsource    = {dblp computer science bibliography, https://dblp.org}
}
Downloads last month
76