albertvillanova's picture
Fix task tags
b1ab9cb
|
raw
history blame
4.5 kB
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
- de
license:
- mit
multilinguality:
- 2 languages
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids: []
tags:
- syntactic-evaluation
- syntactic-transformation
---
# Dataset Card for syntactic_transformations
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/sebschu/multilingual-transformations
- **Paper:** [Coloring the Blank Slate: Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models](https://aclanthology.org/2022.findings-acl.106/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Aaron Mueller](mailto:[email protected])
### Dataset Summary
This contains the the syntactic transformations datasets used in [Coloring the Blank Slate: Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models](https://aclanthology.org/2022.findings-acl.106/). It consists of English and German question formation and passivization transformations. This dataset also contains zero-shot cross-lingual transfer training and evaluation data.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
English and German.
## Dataset Structure
### Data Instances
A typical data point consists of a source sequence ("src"), a target sequence ("tgt"), and a task prefix ("prefix"). The prefix indicates whether a given sequence should be kept the same in the target (indicated by the "decl:" prefix) or transformed into a question/passive ("quest:"/"passiv:", respectively). An example follows:
{"src": "the yak has entertained the walruses that have amused the newt.",
"tgt": "has the yak entertained the walruses that have amused the newt?",
"prefix": "quest: "
}
### Data Fields
- src: the original source sequence.
- tgt: the transformed target sequence.
- prefix: indicates which transformation to perform to map from the source to target sequences.
### Data Splits
The datasets are split into training, dev, test, and gen ("generalization") sets. The training sets are for fine-tuning the model. The dev and test sets are for evaluating model abilities on in-domain transformations. The generalization sets are for evaluating the inductive biases of the model.
NOTE: for the zero-shot cross-lingual transfer datasets, the generalization sets are split into in-domain and out-of-domain syntactic structures. For in-domain transformations, use "gen_rc_o" for question formation or "gen_pp_o" for passivization. For out-of-domain transformations, use "gen_rc_s" for question formation or "gen_pp_s" for passivization.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
[Needs More Information]