File size: 4,495 Bytes
91a19aa 9cd5b2f 91a19aa b1ab9cb 91a19aa b1ab9cb 91a19aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
- de
license:
- mit
multilinguality:
- 2 languages
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids: []
tags:
- syntactic-evaluation
- syntactic-transformation
---
# Dataset Card for syntactic_transformations
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/sebschu/multilingual-transformations
- **Paper:** [Coloring the Blank Slate: Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models](https://aclanthology.org/2022.findings-acl.106/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Aaron Mueller](mailto:[email protected])
### Dataset Summary
This contains the the syntactic transformations datasets used in [Coloring the Blank Slate: Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models](https://aclanthology.org/2022.findings-acl.106/). It consists of English and German question formation and passivization transformations. This dataset also contains zero-shot cross-lingual transfer training and evaluation data.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
English and German.
## Dataset Structure
### Data Instances
A typical data point consists of a source sequence ("src"), a target sequence ("tgt"), and a task prefix ("prefix"). The prefix indicates whether a given sequence should be kept the same in the target (indicated by the "decl:" prefix) or transformed into a question/passive ("quest:"/"passiv:", respectively). An example follows:
{"src": "the yak has entertained the walruses that have amused the newt.",
"tgt": "has the yak entertained the walruses that have amused the newt?",
"prefix": "quest: "
}
### Data Fields
- src: the original source sequence.
- tgt: the transformed target sequence.
- prefix: indicates which transformation to perform to map from the source to target sequences.
### Data Splits
The datasets are split into training, dev, test, and gen ("generalization") sets. The training sets are for fine-tuning the model. The dev and test sets are for evaluating model abilities on in-domain transformations. The generalization sets are for evaluating the inductive biases of the model.
NOTE: for the zero-shot cross-lingual transfer datasets, the generalization sets are split into in-domain and out-of-domain syntactic structures. For in-domain transformations, use "gen_rc_o" for question formation or "gen_pp_o" for passivization. For out-of-domain transformations, use "gen_rc_s" for question formation or "gen_pp_s" for passivization.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
[Needs More Information] |