facial_keypoint_detection / facial_keypoint_detection.py
vkashko's picture
fix: path types
8a7cdd1
raw
history blame
5.32 kB
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {facial_keypoint_detection},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is designed for computer vision and machine learning tasks
involving the identification and analysis of key points on a human face.
It consists of images of human faces, each accompanied by key point
annotations in XML format.
"""
_NAME = 'facial_keypoint_detection'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
def exif_transpose(img):
if not img:
return img
exif_orientation_tag = 274
# Check for EXIF data (only present on some files)
if hasattr(img, "_getexif") and isinstance(
img._getexif(), dict) and exif_orientation_tag in img._getexif():
exif_data = img._getexif()
orientation = exif_data[exif_orientation_tag]
# Handle EXIF Orientation
if orientation == 1:
# Normal image - nothing to do!
pass
elif orientation == 2:
# Mirrored left to right
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 3:
# Rotated 180 degrees
img = img.rotate(180)
elif orientation == 4:
# Mirrored top to bottom
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 5:
# Mirrored along top-left diagonal
img = img.rotate(-90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 6:
# Rotated 90 degrees
img = img.rotate(-90, expand=True)
elif orientation == 7:
# Mirrored along top-right diagonal
img = img.rotate(90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 8:
# Rotated 270 degrees
img = img.rotate(90, expand=True)
return img
def load_image_file(file, mode='RGB'):
# Load the image with PIL
img = PIL.Image.open(file)
if hasattr(PIL.ImageOps, 'exif_transpose'):
# Very recent versions of PIL can do exit transpose internally
img = PIL.ImageOps.exif_transpose(img)
else:
# Otherwise, do the exif transpose ourselves
img = exif_transpose(img)
img = img.convert(mode)
img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS)
return img
class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'image_id': datasets.Value('uint32'),
'image': datasets.Image(),
'mask': datasets.Image(),
'key_points': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(f"{_DATA}images.zip")
masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
images = dl_manager.iter_files(images)
masks = dl_manager.iter_files(masks)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
"masks": masks,
'annotations': annotations
}),
]
def _generate_examples(self, images, masks, annotations):
annotations_df = pd.read_csv(annotations, sep=',')
images_data = pd.DataFrame(
columns=['image_name', 'image_path', 'mask_path'])
for idx, (image_path, mask_path) in enumerate(zip(images, masks)):
images_data.loc[idx] = {
'image_name': image_path.split('/')[-1],
'image_path': image_path,
'mask_path': mask_path
}
annotations_df = pd.merge(annotations_df,
images_data,
how='left',
on=['image_name'])
annotations_df[['image_path', 'mask_path'
]] = annotations_df[['image_path',
'mask_path']].astype('string')
for row in annotations_df.sort_values(['image_name'
]).itertuples(index=False):
yield idx, {
'image_id': row[0],
'image': row[3],
'mask': row[4],
'key_points': row[2]
}