|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import PIL.Image |
|
import PIL.ImageOps |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {facial_keypoint_detection}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset is designed for computer vision and machine learning tasks |
|
involving the identification and analysis of key points on a human face. |
|
It consists of images of human faces, each accompanied by key point |
|
annotations in XML format. |
|
""" |
|
_NAME = 'facial_keypoint_detection' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
def exif_transpose(img): |
|
if not img: |
|
return img |
|
|
|
exif_orientation_tag = 274 |
|
|
|
|
|
if hasattr(img, "_getexif") and isinstance( |
|
img._getexif(), dict) and exif_orientation_tag in img._getexif(): |
|
exif_data = img._getexif() |
|
orientation = exif_data[exif_orientation_tag] |
|
|
|
|
|
if orientation == 1: |
|
|
|
pass |
|
elif orientation == 2: |
|
|
|
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 3: |
|
|
|
img = img.rotate(180) |
|
elif orientation == 4: |
|
|
|
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 5: |
|
|
|
img = img.rotate(-90, |
|
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 6: |
|
|
|
img = img.rotate(-90, expand=True) |
|
elif orientation == 7: |
|
|
|
img = img.rotate(90, |
|
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 8: |
|
|
|
img = img.rotate(90, expand=True) |
|
|
|
return img |
|
|
|
|
|
def load_image_file(file, mode='RGB'): |
|
|
|
img = PIL.Image.open(file) |
|
|
|
if hasattr(PIL.ImageOps, 'exif_transpose'): |
|
|
|
img = PIL.ImageOps.exif_transpose(img) |
|
else: |
|
|
|
img = exif_transpose(img) |
|
|
|
img = img.convert(mode) |
|
img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS) |
|
|
|
return img |
|
|
|
|
|
class FacialKeypointDetection(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'image_id': datasets.Value('uint32'), |
|
'image': datasets.Image(), |
|
'mask': datasets.Image(), |
|
'key_points': datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download_and_extract(f"{_DATA}images.zip") |
|
masks = dl_manager.download_and_extract(f"{_DATA}masks.zip") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_files(images) |
|
masks = dl_manager.iter_files(masks) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
"masks": masks, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, images, masks, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=',') |
|
images_data = pd.DataFrame( |
|
columns=['image_name', 'image_path', 'mask_path']) |
|
for idx, (image_path, mask_path) in enumerate(zip(images, masks)): |
|
images_data.loc[idx] = { |
|
'image_name': image_path.split('/')[-1], |
|
'image_path': image_path, |
|
'mask_path': mask_path |
|
} |
|
|
|
annotations_df = pd.merge(annotations_df, |
|
images_data, |
|
how='left', |
|
on=['image_name']) |
|
|
|
annotations_df[['image_path', 'mask_path' |
|
]] = annotations_df[['image_path', |
|
'mask_path']].astype('string') |
|
|
|
for row in annotations_df.sort_values(['image_name' |
|
]).itertuples(index=False): |
|
yield idx, { |
|
'image_id': row[0], |
|
'image': row[3], |
|
'mask': row[4], |
|
'key_points': row[2] |
|
} |
|
|