File size: 5,318 Bytes
bdc95f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bce7a0
bdc95f7
c79462a
bdc95f7
 
 
 
 
 
 
 
 
b744c0b
 
bdc95f7
 
 
 
 
 
 
 
 
 
 
b744c0b
 
bdc95f7
 
 
 
b744c0b
bdc95f7
 
 
 
b744c0b
bdc95f7
b744c0b
 
 
bdc95f7
b744c0b
 
 
bdc95f7
 
 
 
 
b744c0b
 
8a7cdd1
 
 
 
b744c0b
 
 
 
35e3f17
 
b744c0b
bdc95f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {facial_keypoint_detection},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset is designed for computer vision and machine learning tasks
involving the identification and analysis of key points on a human face.
It consists of images of human faces, each accompanied by key point
annotations in XML format.
"""
_NAME = 'facial_keypoint_detection'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = "cc-by-nc-nd-4.0"

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


def exif_transpose(img):
    if not img:
        return img

    exif_orientation_tag = 274

    # Check for EXIF data (only present on some files)
    if hasattr(img, "_getexif") and isinstance(
            img._getexif(), dict) and exif_orientation_tag in img._getexif():
        exif_data = img._getexif()
        orientation = exif_data[exif_orientation_tag]

        # Handle EXIF Orientation
        if orientation == 1:
            # Normal image - nothing to do!
            pass
        elif orientation == 2:
            # Mirrored left to right
            img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 3:
            # Rotated 180 degrees
            img = img.rotate(180)
        elif orientation == 4:
            # Mirrored top to bottom
            img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 5:
            # Mirrored along top-left diagonal
            img = img.rotate(-90,
                             expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 6:
            # Rotated 90 degrees
            img = img.rotate(-90, expand=True)
        elif orientation == 7:
            # Mirrored along top-right diagonal
            img = img.rotate(90,
                             expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 8:
            # Rotated 270 degrees
            img = img.rotate(90, expand=True)

    return img


def load_image_file(file, mode='RGB'):
    # Load the image with PIL
    img = PIL.Image.open(file)

    if hasattr(PIL.ImageOps, 'exif_transpose'):
        # Very recent versions of PIL can do exit transpose internally
        img = PIL.ImageOps.exif_transpose(img)
    else:
        # Otherwise, do the exif transpose ourselves
        img = exif_transpose(img)

    img = img.convert(mode)
    img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS)

    return img


class FacialKeypointDetection(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(description=_DESCRIPTION,
                                    features=datasets.Features({
                                        'image_id': datasets.Value('uint32'),
                                        'image': datasets.Image(),
                                        'mask': datasets.Image(),
                                        'key_points': datasets.Value('string')
                                    }),
                                    supervised_keys=None,
                                    homepage=_HOMEPAGE,
                                    citation=_CITATION,
                                    license=_LICENSE)

    def _split_generators(self, dl_manager):
        images = dl_manager.download_and_extract(f"{_DATA}images.zip")
        masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        images = dl_manager.iter_files(images)
        masks = dl_manager.iter_files(masks)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "images": images,
                                        "masks": masks,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, images, masks, annotations):
        annotations_df = pd.read_csv(annotations, sep=',')
        images_data = pd.DataFrame(
            columns=['image_name', 'image_path', 'mask_path'])
        for idx, (image_path, mask_path) in enumerate(zip(images, masks)):
            images_data.loc[idx] = {
                'image_name': image_path.split('/')[-1],
                'image_path': image_path,
                'mask_path': mask_path
            }

        annotations_df = pd.merge(annotations_df,
                                  images_data,
                                  how='left',
                                  on=['image_name'])

        annotations_df[['image_path', 'mask_path'
                       ]] = annotations_df[['image_path',
                                            'mask_path']].astype('string')

        for row in annotations_df.sort_values(['image_name'
                                              ]).itertuples(index=False):
            yield idx, {
                'image_id': row[0],
                'image': row[3],
                'mask': row[4],
                'key_points': row[2]
            }