File size: 5,318 Bytes
bdc95f7 9bce7a0 bdc95f7 c79462a bdc95f7 b744c0b bdc95f7 b744c0b bdc95f7 b744c0b bdc95f7 b744c0b bdc95f7 b744c0b bdc95f7 b744c0b bdc95f7 b744c0b 8a7cdd1 b744c0b 35e3f17 b744c0b bdc95f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {facial_keypoint_detection},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is designed for computer vision and machine learning tasks
involving the identification and analysis of key points on a human face.
It consists of images of human faces, each accompanied by key point
annotations in XML format.
"""
_NAME = 'facial_keypoint_detection'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
def exif_transpose(img):
if not img:
return img
exif_orientation_tag = 274
# Check for EXIF data (only present on some files)
if hasattr(img, "_getexif") and isinstance(
img._getexif(), dict) and exif_orientation_tag in img._getexif():
exif_data = img._getexif()
orientation = exif_data[exif_orientation_tag]
# Handle EXIF Orientation
if orientation == 1:
# Normal image - nothing to do!
pass
elif orientation == 2:
# Mirrored left to right
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 3:
# Rotated 180 degrees
img = img.rotate(180)
elif orientation == 4:
# Mirrored top to bottom
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 5:
# Mirrored along top-left diagonal
img = img.rotate(-90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 6:
# Rotated 90 degrees
img = img.rotate(-90, expand=True)
elif orientation == 7:
# Mirrored along top-right diagonal
img = img.rotate(90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 8:
# Rotated 270 degrees
img = img.rotate(90, expand=True)
return img
def load_image_file(file, mode='RGB'):
# Load the image with PIL
img = PIL.Image.open(file)
if hasattr(PIL.ImageOps, 'exif_transpose'):
# Very recent versions of PIL can do exit transpose internally
img = PIL.ImageOps.exif_transpose(img)
else:
# Otherwise, do the exif transpose ourselves
img = exif_transpose(img)
img = img.convert(mode)
img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS)
return img
class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'image_id': datasets.Value('uint32'),
'image': datasets.Image(),
'mask': datasets.Image(),
'key_points': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(f"{_DATA}images.zip")
masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
images = dl_manager.iter_files(images)
masks = dl_manager.iter_files(masks)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
"masks": masks,
'annotations': annotations
}),
]
def _generate_examples(self, images, masks, annotations):
annotations_df = pd.read_csv(annotations, sep=',')
images_data = pd.DataFrame(
columns=['image_name', 'image_path', 'mask_path'])
for idx, (image_path, mask_path) in enumerate(zip(images, masks)):
images_data.loc[idx] = {
'image_name': image_path.split('/')[-1],
'image_path': image_path,
'mask_path': mask_path
}
annotations_df = pd.merge(annotations_df,
images_data,
how='left',
on=['image_name'])
annotations_df[['image_path', 'mask_path'
]] = annotations_df[['image_path',
'mask_path']].astype('string')
for row in annotations_df.sort_values(['image_name'
]).itertuples(index=False):
yield idx, {
'image_id': row[0],
'image': row[3],
'mask': row[4],
'key_points': row[2]
}
|