import datasets import numpy as np import pandas as pd import PIL.Image import PIL.ImageOps _CITATION = """\ @InProceedings{huggingface:dataset, title = {facial_keypoint_detection}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset is designed for computer vision and machine learning tasks involving the identification and analysis of key points on a human face. It consists of images of human faces, each accompanied by key point annotations in XML format. """ _NAME = 'facial_keypoint_detection' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" def exif_transpose(img): if not img: return img exif_orientation_tag = 274 # Check for EXIF data (only present on some files) if hasattr(img, "_getexif") and isinstance( img._getexif(), dict) and exif_orientation_tag in img._getexif(): exif_data = img._getexif() orientation = exif_data[exif_orientation_tag] # Handle EXIF Orientation if orientation == 1: # Normal image - nothing to do! pass elif orientation == 2: # Mirrored left to right img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 3: # Rotated 180 degrees img = img.rotate(180) elif orientation == 4: # Mirrored top to bottom img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 5: # Mirrored along top-left diagonal img = img.rotate(-90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 6: # Rotated 90 degrees img = img.rotate(-90, expand=True) elif orientation == 7: # Mirrored along top-right diagonal img = img.rotate(90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 8: # Rotated 270 degrees img = img.rotate(90, expand=True) return img def load_image_file(file, mode='RGB'): # Load the image with PIL img = PIL.Image.open(file) if hasattr(PIL.ImageOps, 'exif_transpose'): # Very recent versions of PIL can do exit transpose internally img = PIL.ImageOps.exif_transpose(img) else: # Otherwise, do the exif transpose ourselves img = exif_transpose(img) img = img.convert(mode) img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS) return img class FacialKeypointDetection(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo(description=_DESCRIPTION, features=datasets.Features({ 'image_id': datasets.Value('uint32'), 'image': datasets.Image(), 'mask': datasets.Image(), 'key_points': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(f"{_DATA}images.zip") masks = dl_manager.download_and_extract(f"{_DATA}masks.zip") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_files(images) masks = dl_manager.iter_files(masks) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, 'annotations': annotations }), ] def _generate_examples(self, images, masks, annotations): annotations_df = pd.read_csv(annotations, sep=',') images_data = pd.DataFrame( columns=['image_name', 'image_path', 'mask_path']) for idx, (image_path, mask_path) in enumerate(zip(images, masks)): images_data.loc[idx] = { 'image_name': image_path.split('/')[-1], 'image_path': image_path, 'mask_path': mask_path } annotations_df = pd.merge(annotations_df, images_data, how='left', on=['image_name']) annotations_df[['image_path', 'mask_path' ]] = annotations_df[['image_path', 'mask_path']].astype('string') for row in annotations_df.sort_values(['image_name' ]).itertuples(index=False): yield idx, { 'image_id': row[0], 'image': row[3], 'mask': row[4], 'key_points': row[2] }