Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,492 Bytes
b9a02ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5389c54
 
 
b9a02ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
dataset_info:
  features:
  - name: image
    dtype:
      image:
        mode: RGB
  - name: instances
    sequence:
      image:
        mode: '1'
  - name: categories
    sequence:
      class_label:
        names:
          '0': Neoplastic
          '1': Inflammatory
          '2': Connective
          '3': Dead
          '4': Epithelial
  - name: tissue
    dtype:
      class_label:
        names:
          '0': Adrenal Gland
          '1': Bile Duct
          '2': Bladder
          '3': Breast
          '4': Cervix
          '5': Colon
          '6': Esophagus
          '7': Head & Neck
          '8': Kidney
          '9': Liver
          '10': Lung
          '11': Ovarian
          '12': Pancreatic
          '13': Prostate
          '14': Skin
          '15': Stomach
          '16': Testis
          '17': Thyroid
          '18': Uterus
  splits:
  - name: fold1
    num_bytes: 283673837.64
    num_examples: 2656
  - name: fold2
    num_bytes: 267595457.439
    num_examples: 2523
  - name: fold3
    num_bytes: 293079722.82
    num_examples: 2722
  download_size: 1665092597
  dataset_size: 844349017.8989999
configs:
- config_name: default
  data_files:
  - split: fold1
    path: data/fold1-*
  - split: fold2
    path: data/fold2-*
  - split: fold3
    path: data/fold3-*
license: cc-by-nc-sa-4.0
task_categories:
- image-segmentation
task_ids:
- instance-segmentation
language:
- en
tags:
- medical
- cell nuclei
- H&E
pretty_name: PanNuke
size_categories:
- 1K<n<10K
paperswithcode_id: pannuke
---

# PanNuke

[![](https://production-media.paperswithcode.com/datasets/eb89f34e-880b-4ab0-9d9b-75d7b6bf3159.png)](https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke)

## Dataset Description

- **Homepage:** [PanNuke Dataset for Nuclei Instance Segmentation and Classification](https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke)
- **Leaderboard:** [Panoptic Segmentation](https://paperswithcode.com/sota/panoptic-segmentation-on-pannuke)

## Description

PanNuke is a semi-automatically generated dataset for nuclei instance segmentation and classification, providing comprehensive nuclei annotations across 19 tissue types and 5 distinct cell categories. The dataset includes a total of **189,744 labeled nuclei**, each accompanied by an instance segmentation mask, and contains **7,901 images**, each sized **256×256 pixels**. The images were captured at **x40 magnification** with a resolution of **0.25 µm/pixel**. The dataset is highly imbalanced, with the **"Dead" nuclei category** being particularly underrepresented.

Please note that the dataset was created by extracting patches from whole-slide images (WSIs). As a result, some nuclei located at the edges of patches may be cropped, with fewer than 10 visible pixels in certain cases.

## Dataset Structure

The dataset is organized into three folds: `fold1`, `fold2`, and `fold3`, consistent with the original dataset structure. Each fold contains data in a tabular format with the following four columns:

- **`image`**: The RGB tile of the sample.
- **`instances`**: A list of nuclei instances. Each instance represents exactly one nucleus and is in binary format (`1` - nucleus, `0` - background)
- **`categories`**: An integer class label for each nucleus, corresponding to one of the following categories:
  0. Neoplastic
  1. Inflammatory
  2. Connective
  3. Dead
  4. Epithelial
- **`tissue`**: The integer tissue type from which the sample originates, belonging to one of these categories:
  0. Adrenal Gland
  1. Bile Duct
  2. Bladder
  3. Breast
  4. Cervix
  5. Colon
  6. Esophagus
  7. Head & Neck
  8. Kidney
  9. Liver
  10. Lung
  11. Ovarian
  12. Pancreatic
  13. Prostate
  14. Skin
  15. Stomach
  16. Testis
  17. Thyroid
  18. Uterus

## Citation

```bibtex
@inproceedings{gamper2019pannuke,
  title={PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification},
  author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Benes, Ksenija and Khuram, Ali and Rajpoot, Nasir},
  booktitle={European Congress on Digital Pathology},
  pages={11--19},
  year={2019},
  organization={Springer}
}
```

```bibtex
@article{gamper2020pannuke,
  title={PanNuke Dataset Extension, Insights and Baselines},
  author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Graham, Simon and Jahanifar, Mostafa and Khurram, Syed Ali and Azam, Ayesha and Hewitt, Katherine and Rajpoot, Nasir},
  journal={arXiv preprint arXiv:2003.10778},
  year={2020}
}
```