Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Search is not available for this dataset
image
imagewidth (px)
256
256
instances
images listlengths
0
276
categories
sequencelengths
0
276
tissue
class label
19 classes
[ 0, 0, 0, 0, 1, 1, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 0, 0, 0, 1, 1, 2, 2 ]
3Breast
[ 0, 0, 1, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 1, 1, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2 ]
3Breast
[ 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 2, 2 ]
3Breast
[ 0, 0, 0, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 1, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 1, 2, 2 ]
3Breast
[ 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ]
3Breast
[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ]
3Breast
[ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 1, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 1, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 1, 2, 2, 2, 2, 4 ]
3Breast
[ 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3Breast
[ 0, 0, 0, 0, 1, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ]
3Breast
[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
3Breast
[ 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4 ]
3Breast
[ 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
3Breast

PanNuke

Description

PanNuke is a semi-automatically generated dataset for nuclei instance segmentation and classification, providing comprehensive nuclei annotations across 19 tissue types and 5 distinct cell categories. The dataset includes a total of 189,744 labeled nuclei, each accompanied by an instance segmentation mask, and contains 7,901 images, each sized 256×256 pixels. The images were captured at x40 magnification with a resolution of 0.25 µm/pixel. The dataset is highly imbalanced, with the "Dead" nuclei category being particularly underrepresented.

Please note that the dataset was created by extracting patches from whole-slide images (WSIs). As a result, some nuclei located at the edges of patches may be cropped, with fewer than 10 visible pixels in certain cases.

Dataset Structure

The dataset is organized into three folds: fold1, fold2, and fold3, consistent with the original dataset structure. Each fold contains data in a tabular format with the following four columns:

  • image: The RGB tile of the sample.
  • instances: A list of nuclei instances. Each instance represents exactly one nucleus and is in binary format (1 - nucleus, 0 - background)
  • categories: An integer class label for each nucleus, corresponding to one of the following categories:
    1. Neoplastic
    2. Inflammatory
    3. Connective
    4. Dead
    5. Epithelial
  • tissue: The integer tissue type from which the sample originates, belonging to one of these categories:
    1. Adrenal Gland
    2. Bile Duct
    3. Bladder
    4. Breast
    5. Cervix
    6. Colon
    7. Esophagus
    8. Head & Neck
    9. Kidney
    10. Liver
    11. Lung
    12. Ovarian
    13. Pancreatic
    14. Prostate
    15. Skin
    16. Stomach
    17. Testis
    18. Thyroid
    19. Uterus

Citation

@inproceedings{gamper2019pannuke,
  title={PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification},
  author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Benes, Ksenija and Khuram, Ali and Rajpoot, Nasir},
  booktitle={European Congress on Digital Pathology},
  pages={11--19},
  year={2019},
  organization={Springer}
}
@article{gamper2020pannuke,
  title={PanNuke Dataset Extension, Insights and Baselines},
  author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Graham, Simon and Jahanifar, Mostafa and Khurram, Syed Ali and Azam, Ayesha and Hewitt, Katherine and Rajpoot, Nasir},
  journal={arXiv preprint arXiv:2003.10778},
  year={2020}
}
Downloads last month
47
Papers with Code

Collection including RationAI/PanNuke