Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
matejpekar commited on
Commit
b9a02ac
·
verified ·
0 Parent(s):

Initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
+ *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: image
5
+ dtype:
6
+ image:
7
+ mode: RGB
8
+ - name: instances
9
+ sequence:
10
+ image:
11
+ mode: '1'
12
+ - name: categories
13
+ sequence:
14
+ class_label:
15
+ names:
16
+ '0': Neoplastic
17
+ '1': Inflammatory
18
+ '2': Connective
19
+ '3': Dead
20
+ '4': Epithelial
21
+ - name: tissue
22
+ dtype:
23
+ class_label:
24
+ names:
25
+ '0': Adrenal Gland
26
+ '1': Bile Duct
27
+ '2': Bladder
28
+ '3': Breast
29
+ '4': Cervix
30
+ '5': Colon
31
+ '6': Esophagus
32
+ '7': Head & Neck
33
+ '8': Kidney
34
+ '9': Liver
35
+ '10': Lung
36
+ '11': Ovarian
37
+ '12': Pancreatic
38
+ '13': Prostate
39
+ '14': Skin
40
+ '15': Stomach
41
+ '16': Testis
42
+ '17': Thyroid
43
+ '18': Uterus
44
+ splits:
45
+ - name: fold1
46
+ num_bytes: 283673837.64
47
+ num_examples: 2656
48
+ - name: fold2
49
+ num_bytes: 267595457.439
50
+ num_examples: 2523
51
+ - name: fold3
52
+ num_bytes: 293079722.82
53
+ num_examples: 2722
54
+ download_size: 1665092597
55
+ dataset_size: 844349017.8989999
56
+ configs:
57
+ - config_name: default
58
+ data_files:
59
+ - split: fold1
60
+ path: data/fold1-*
61
+ - split: fold2
62
+ path: data/fold2-*
63
+ - split: fold3
64
+ path: data/fold3-*
65
+ license: cc-by-nc-sa-4.0
66
+ task_categories:
67
+ - image-segmentation
68
+ task_ids:
69
+ - instance-segmentation
70
+ language:
71
+ - en
72
+ tags:
73
+ - medical
74
+ - cell nuclei
75
+ - H&E
76
+ pretty_name: PanNuke
77
+ size_categories:
78
+ - 1K<n<10K
79
+ paperswithcode_id: pannuke
80
+ ---
81
+
82
+ # PanNuke
83
+
84
+ [![](https://production-media.paperswithcode.com/datasets/eb89f34e-880b-4ab0-9d9b-75d7b6bf3159.png)](https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke)
85
+
86
+ ## Dataset Description
87
+
88
+ - **Homepage:** [PanNuke Dataset for Nuclei Instance Segmentation and Classification](https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke)
89
+ - **Leaderboard:** [Panoptic Segmentation](https://paperswithcode.com/sota/panoptic-segmentation-on-pannuke)
90
+
91
+ ## Description
92
+
93
+ PanNuke is a semi automatically generated nuclei instance segmentation and classification dataset with exhaustive nuclei labels across 19 different tissue types. In total the dataset contains 189,744 labeled nuclei, each with an instance segmentation mask.
94
+
95
+ ## Dataset Structure
96
+
97
+ The dataset is organized into three folds: `fold1`, `fold2`, and `fold3`, consistent with the original dataset structure. Each fold contains data in a tabular format with the following four columns:
98
+
99
+ - **`image`**: The RGB tile of the sample.
100
+ - **`instances`**: A list of nuclei instances. Each instance represents exactly one nucleus and is in binary format (`1` - nucleus, `0` - background)
101
+ - **`categories`**: An integer class label for each nucleus, corresponding to one of the following categories:
102
+ 0. Neoplastic
103
+ 1. Inflammatory
104
+ 2. Connective
105
+ 3. Dead
106
+ 4. Epithelial
107
+ - **`tissue`**: The integer tissue type from which the sample originates, belonging to one of these categories:
108
+ 0. Adrenal Gland
109
+ 1. Bile Duct
110
+ 2. Bladder
111
+ 3. Breast
112
+ 4. Cervix
113
+ 5. Colon
114
+ 6. Esophagus
115
+ 7. Head & Neck
116
+ 8. Kidney
117
+ 9. Liver
118
+ 10. Lung
119
+ 11. Ovarian
120
+ 12. Pancreatic
121
+ 13. Prostate
122
+ 14. Skin
123
+ 15. Stomach
124
+ 16. Testis
125
+ 17. Thyroid
126
+ 18. Uterus
127
+
128
+ ## Citation
129
+
130
+ ```bibtex
131
+ @inproceedings{gamper2019pannuke,
132
+ title={PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification},
133
+ author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Benes, Ksenija and Khuram, Ali and Rajpoot, Nasir},
134
+ booktitle={European Congress on Digital Pathology},
135
+ pages={11--19},
136
+ year={2019},
137
+ organization={Springer}
138
+ }
139
+ ```
140
+
141
+ ```bibtex
142
+ @article{gamper2020pannuke,
143
+ title={PanNuke Dataset Extension, Insights and Baselines},
144
+ author={Gamper, Jevgenij and Koohbanani, Navid Alemi and Graham, Simon and Jahanifar, Mostafa and Khurram, Syed Ali and Azam, Ayesha and Hewitt, Katherine and Rajpoot, Nasir},
145
+ journal={arXiv preprint arXiv:2003.10778},
146
+ year={2020}
147
+ }
148
+ ```
data/fold1-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84428c1abae5015baf6b324f4927fe8558bbb6610137eb047a335aae7d040f25
3
+ size 280039274
data/fold2-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a779daf86cd3ebd25e885e50ec131b7d05e53ad3a6ada21e387d4bc2f9d2b3d8
3
+ size 264174099
data/fold3-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5684f09517e81ff18e570608a54741e4e6715a93cbe08e32dbec3d60513457a0
3
+ size 289256878
gen_script.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Generator
2
+ from pathlib import Path
3
+ from typing import Any
4
+
5
+ import datasets
6
+ import numpy as np
7
+ from datasets import Dataset
8
+ from datasets.splits import NamedSplit
9
+ from numpy.typing import NDArray
10
+ from PIL import Image
11
+ from tqdm import tqdm
12
+
13
+
14
+ tissue_map = {
15
+ "Bile-duct": "Bile Duct",
16
+ "HeadNeck": "Head & Neck",
17
+ "Adrenal_gland": "Adrenal Gland",
18
+ }
19
+
20
+ features = datasets.Features(
21
+ {
22
+ "image": datasets.Image(mode="RGB"),
23
+ "instances": datasets.Sequence(datasets.Image(mode="1")),
24
+ "categories": datasets.Sequence(
25
+ datasets.ClassLabel(
26
+ num_classes=5,
27
+ names=[
28
+ "Neoplastic",
29
+ "Inflammatory",
30
+ "Connective",
31
+ "Dead",
32
+ "Epithelial",
33
+ ],
34
+ )
35
+ ),
36
+ "tissue": datasets.ClassLabel(
37
+ num_classes=19,
38
+ names=[
39
+ "Adrenal Gland",
40
+ "Bile Duct",
41
+ "Bladder",
42
+ "Breast",
43
+ "Cervix",
44
+ "Colon",
45
+ "Esophagus",
46
+ "Head & Neck",
47
+ "Kidney",
48
+ "Liver",
49
+ "Lung",
50
+ "Ovarian",
51
+ "Pancreatic",
52
+ "Prostate",
53
+ "Skin",
54
+ "Stomach",
55
+ "Testis",
56
+ "Thyroid",
57
+ "Uterus",
58
+ ],
59
+ ),
60
+ }
61
+ )
62
+
63
+
64
+ def one_hot_mask(
65
+ mask: NDArray[np.float64],
66
+ ) -> tuple[NDArray[np.bool], NDArray[np.uint8]]:
67
+ """Converts a mask to one-hot encoding.
68
+
69
+ Returns:
70
+ A dictionary with the following keys:
71
+ - masks: A 3D array with shape (num_masks, height, width) containing the
72
+ one-hot encoded masks.
73
+ - labels: A 1D array with shape (num_masks,) containing the class labels.
74
+ """
75
+ masks: list[NDArray[np.bool]] = []
76
+ labels: list[NDArray[np.uint8]] = []
77
+
78
+ for c in range(mask.shape[-1] - 1):
79
+ masks.append(mask[..., c] == np.unique(mask[..., c])[1:, None, None])
80
+ labels.append(np.full(masks[-1].shape[0], c, dtype=np.uint8))
81
+
82
+ return np.concatenate(masks), np.concatenate(labels)
83
+
84
+
85
+ def process(path: str, subfolder: str) -> Generator[dict[str, Any], None, None]:
86
+ images = np.load(Path(path, "images", subfolder, "images.npy"), mmap_mode="r")
87
+ masks = np.load(Path(path, "masks", subfolder, "masks.npy"), mmap_mode="r")
88
+ types = np.load(Path(path, "images", subfolder, "types.npy"))
89
+
90
+ for image, mask, tissue in tqdm(
91
+ zip(images, masks, types, strict=True), total=len(images)
92
+ ):
93
+ mask, labels = one_hot_mask(mask)
94
+
95
+ yield {
96
+ "image": Image.fromarray(image.astype(np.uint8)),
97
+ "instances": [Image.fromarray(m) for m in mask],
98
+ "categories": labels,
99
+ "tissue": tissue_map.get(tissue, tissue),
100
+ }
101
+
102
+
103
+ if __name__ == "__main__":
104
+ fold1 = Dataset.from_generator(
105
+ process,
106
+ gen_kwargs={"path": "PanNuke/Fold 1", "subfolder": "fold1"},
107
+ features=features,
108
+ split=NamedSplit("fold1"),
109
+ keep_in_memory=True,
110
+ )
111
+ fold1.push_to_hub("RationAI/PanNuke")
112
+ fold2 = Dataset.from_generator(
113
+ process,
114
+ gen_kwargs={"path": "PanNuke/Fold 2", "subfolder": "fold2"},
115
+ features=features,
116
+ split=NamedSplit("fold2"),
117
+ keep_in_memory=True,
118
+ )
119
+ fold2.push_to_hub("RationAI/PanNuke")
120
+ fold3 = Dataset.from_generator(
121
+ process,
122
+ gen_kwargs={"path": "PanNuke/Fold 3", "subfolder": "fold3"},
123
+ features=features,
124
+ split=NamedSplit("fold3"),
125
+ keep_in_memory=True,
126
+ )
127
+ fold3.push_to_hub("RationAI/PanNuke")