Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
ArXiv:
Tags:
sentence-transformers
License:
annotations_creators: | |
- crowdsourced | |
language_creators: | |
- crowdsourced | |
- found | |
- machine-generated | |
language: | |
- de | |
- en | |
- es | |
- fr | |
- it | |
- nl | |
- pl | |
- pt | |
- ru | |
- zh | |
license: | |
- other | |
multilinguality: | |
- multilingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- extended|other-sts-b | |
task_categories: | |
- text-classification | |
task_ids: | |
- text-scoring | |
- semantic-similarity-scoring | |
tags: | |
- sentence-transformers | |
pretty_name: STSb Multi MT | |
dataset_info: | |
- config_name: de | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 867465 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 193325 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 247069 | |
num_examples: 1500 | |
download_size: 823156 | |
dataset_size: 1307859 | |
- config_name: en | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 731795 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 164458 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 210064 | |
num_examples: 1500 | |
download_size: 720594 | |
dataset_size: 1106317 | |
- config_name: es | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 887093 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 194608 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 245242 | |
num_examples: 1500 | |
download_size: 803220 | |
dataset_size: 1326943 | |
- config_name: fr | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 910187 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 200438 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 254075 | |
num_examples: 1500 | |
download_size: 828209 | |
dataset_size: 1364700 | |
- config_name: it | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 871518 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 191639 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 243136 | |
num_examples: 1500 | |
download_size: 813106 | |
dataset_size: 1306293 | |
- config_name: nl | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 833659 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 182896 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 234879 | |
num_examples: 1500 | |
download_size: 786341 | |
dataset_size: 1251434 | |
- config_name: pl | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 828425 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 181258 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 231750 | |
num_examples: 1500 | |
download_size: 832282 | |
dataset_size: 1241433 | |
- config_name: pt | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 854348 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 189155 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 240551 | |
num_examples: 1500 | |
download_size: 799737 | |
dataset_size: 1284054 | |
- config_name: ru | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 1391666 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 299999 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 386260 | |
num_examples: 1500 | |
download_size: 1088400 | |
dataset_size: 2077925 | |
- config_name: zh | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: similarity_score | |
dtype: float32 | |
splits: | |
- name: train | |
num_bytes: 694416 | |
num_examples: 5749 | |
- name: test | |
num_bytes: 154826 | |
num_examples: 1379 | |
- name: dev | |
num_bytes: 195813 | |
num_examples: 1500 | |
download_size: 715580 | |
dataset_size: 1045055 | |
configs: | |
- config_name: de | |
data_files: | |
- split: train | |
path: de/train-* | |
- split: test | |
path: de/test-* | |
- split: dev | |
path: de/dev-* | |
- config_name: en | |
data_files: | |
- split: train | |
path: en/train-* | |
- split: test | |
path: en/test-* | |
- split: dev | |
path: en/dev-* | |
- config_name: es | |
data_files: | |
- split: train | |
path: es/train-* | |
- split: test | |
path: es/test-* | |
- split: dev | |
path: es/dev-* | |
- config_name: fr | |
data_files: | |
- split: train | |
path: fr/train-* | |
- split: test | |
path: fr/test-* | |
- split: dev | |
path: fr/dev-* | |
- config_name: it | |
data_files: | |
- split: train | |
path: it/train-* | |
- split: test | |
path: it/test-* | |
- split: dev | |
path: it/dev-* | |
- config_name: nl | |
data_files: | |
- split: train | |
path: nl/train-* | |
- split: test | |
path: nl/test-* | |
- split: dev | |
path: nl/dev-* | |
- config_name: pl | |
data_files: | |
- split: train | |
path: pl/train-* | |
- split: test | |
path: pl/test-* | |
- split: dev | |
path: pl/dev-* | |
- config_name: pt | |
data_files: | |
- split: train | |
path: pt/train-* | |
- split: test | |
path: pt/test-* | |
- split: dev | |
path: pt/dev-* | |
- config_name: ru | |
data_files: | |
- split: train | |
path: ru/train-* | |
- split: test | |
path: ru/test-* | |
- split: dev | |
path: ru/dev-* | |
- config_name: zh | |
data_files: | |
- split: train | |
path: zh/train-* | |
- split: test | |
path: zh/test-* | |
- split: dev | |
path: zh/dev-* | |
# Dataset Card for STSb Multi MT | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Repository**: https://github.com/PhilipMay/stsb-multi-mt | |
- **Homepage (original dataset):** https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark | |
- **Paper about original dataset:** https://arxiv.org/abs/1708.00055 | |
- **Leaderboard:** https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark#Results | |
- **Point of Contact:** [Open an issue on GitHub](https://github.com/PhilipMay/stsb-multi-mt/issues/new) | |
### Dataset Summary | |
> STS Benchmark comprises a selection of the English datasets used in the STS tasks organized | |
> in the context of SemEval between 2012 and 2017. The selection of datasets include text from | |
> image captions, news headlines and user forums. ([source](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark)) | |
These are different multilingual translations and the English original of the [STSbenchmark dataset](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark). Translation has been done with [deepl.com](https://www.deepl.com/). It can be used to train [sentence embeddings](https://github.com/UKPLab/sentence-transformers) like [T-Systems-onsite/cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer). | |
**Examples of Use** | |
Load German dev Dataset: | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("stsb_multi_mt", name="de", split="dev") | |
``` | |
Load English train Dataset: | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("stsb_multi_mt", name="en", split="train") | |
``` | |
### Supported Tasks and Leaderboards | |
[More Information Needed] | |
### Languages | |
Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh | |
## Dataset Structure | |
### Data Instances | |
This dataset provides pairs of sentences and a score of their similarity. | |
score | 2 example sentences | explanation | |
------|---------|------------ | |
5 | *The bird is bathing in the sink.<br/>Birdie is washing itself in the water basin.* | The two sentences are completely equivalent, as they mean the same thing. | |
4 | *Two boys on a couch are playing video games.<br/>Two boys are playing a video game.* | The two sentences are mostly equivalent, but some unimportant details differ. | |
3 | *John said he is considered a witness but not a suspect.<br/>“He is not a suspect anymore.” John said.* | The two sentences are roughly equivalent, but some important information differs/missing. | |
2 | *They flew out of the nest in groups.<br/>They flew into the nest together.* | The two sentences are not equivalent, but share some details. | |
1 | *The woman is playing the violin.<br/>The young lady enjoys listening to the guitar.* | The two sentences are not equivalent, but are on the same topic. | |
0 | *The black dog is running through the snow.<br/>A race car driver is driving his car through the mud.* | The two sentences are completely dissimilar. | |
An example: | |
``` | |
{ | |
"sentence1": "A man is playing a large flute.", | |
"sentence2": "A man is playing a flute.", | |
"similarity_score": 3.8 | |
} | |
``` | |
### Data Fields | |
- `sentence1`: The 1st sentence as a `str`. | |
- `sentence2`: The 2nd sentence as a `str`. | |
- `similarity_score`: The similarity score as a `float` which is `<= 5.0` and `>= 0.0`. | |
### Data Splits | |
- train with 5749 samples | |
- dev with 1500 samples | |
- test with 1379 sampples | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
See [LICENSE](https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE) and [download at original dataset](https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). | |
### Citation Information | |
``` | |
@InProceedings{huggingface:dataset:stsb_multi_mt, | |
title = {Machine translated multilingual STS benchmark dataset.}, | |
author={Philip May}, | |
year={2021}, | |
url={https://github.com/PhilipMay/stsb-multi-mt} | |
} | |
``` | |
### Contributions | |
Thanks to [@PhilipMay](https://github.com/PhilipMay) for adding this dataset. |