Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
ArXiv:
Tags:
sentence-transformers
License:
File size: 11,384 Bytes
a7b4daa bc930e6 a7b4daa 9dc6f37 a7b4daa bc930e6 a7b4daa a143984 a7b4daa a143984 a7b4daa 3acaa3d dd87767 59b9b43 e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 59b9b43 e1b7f86 59b9b43 93d57ef e1b7f86 93d57ef e1b7f86 93d57ef e1b7f86 a7b4daa c182ae8 a7b4daa 59b9b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
- machine-generated
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
license:
- other
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-sts-b
task_categories:
- text-classification
task_ids:
- text-scoring
- semantic-similarity-scoring
tags:
- sentence-transformers
pretty_name: STSb Multi MT
dataset_info:
- config_name: de
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 867465
num_examples: 5749
- name: test
num_bytes: 193325
num_examples: 1379
- name: dev
num_bytes: 247069
num_examples: 1500
download_size: 823156
dataset_size: 1307859
- config_name: en
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 731795
num_examples: 5749
- name: test
num_bytes: 164458
num_examples: 1379
- name: dev
num_bytes: 210064
num_examples: 1500
download_size: 720594
dataset_size: 1106317
- config_name: es
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 887093
num_examples: 5749
- name: test
num_bytes: 194608
num_examples: 1379
- name: dev
num_bytes: 245242
num_examples: 1500
download_size: 803220
dataset_size: 1326943
- config_name: fr
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 910187
num_examples: 5749
- name: test
num_bytes: 200438
num_examples: 1379
- name: dev
num_bytes: 254075
num_examples: 1500
download_size: 828209
dataset_size: 1364700
- config_name: it
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 871518
num_examples: 5749
- name: test
num_bytes: 191639
num_examples: 1379
- name: dev
num_bytes: 243136
num_examples: 1500
download_size: 813106
dataset_size: 1306293
- config_name: nl
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 833659
num_examples: 5749
- name: test
num_bytes: 182896
num_examples: 1379
- name: dev
num_bytes: 234879
num_examples: 1500
download_size: 786341
dataset_size: 1251434
- config_name: pl
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 828425
num_examples: 5749
- name: test
num_bytes: 181258
num_examples: 1379
- name: dev
num_bytes: 231750
num_examples: 1500
download_size: 832282
dataset_size: 1241433
- config_name: pt
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 854348
num_examples: 5749
- name: test
num_bytes: 189155
num_examples: 1379
- name: dev
num_bytes: 240551
num_examples: 1500
download_size: 799737
dataset_size: 1284054
- config_name: ru
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 1391666
num_examples: 5749
- name: test
num_bytes: 299999
num_examples: 1379
- name: dev
num_bytes: 386260
num_examples: 1500
download_size: 1088400
dataset_size: 2077925
- config_name: zh
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 694416
num_examples: 5749
- name: test
num_bytes: 154826
num_examples: 1379
- name: dev
num_bytes: 195813
num_examples: 1500
download_size: 715580
dataset_size: 1045055
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: test
path: de/test-*
- split: dev
path: de/dev-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: test
path: en/test-*
- split: dev
path: en/dev-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: test
path: es/test-*
- split: dev
path: es/dev-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: test
path: fr/test-*
- split: dev
path: fr/dev-*
- config_name: it
data_files:
- split: train
path: it/train-*
- split: test
path: it/test-*
- split: dev
path: it/dev-*
- config_name: nl
data_files:
- split: train
path: nl/train-*
- split: test
path: nl/test-*
- split: dev
path: nl/dev-*
- config_name: pl
data_files:
- split: train
path: pl/train-*
- split: test
path: pl/test-*
- split: dev
path: pl/dev-*
- config_name: pt
data_files:
- split: train
path: pt/train-*
- split: test
path: pt/test-*
- split: dev
path: pt/dev-*
- config_name: ru
data_files:
- split: train
path: ru/train-*
- split: test
path: ru/test-*
- split: dev
path: ru/dev-*
- config_name: zh
data_files:
- split: train
path: zh/train-*
- split: test
path: zh/test-*
- split: dev
path: zh/dev-*
---
# Dataset Card for STSb Multi MT
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository**: https://github.com/PhilipMay/stsb-multi-mt
- **Homepage (original dataset):** https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
- **Paper about original dataset:** https://arxiv.org/abs/1708.00055
- **Leaderboard:** https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark#Results
- **Point of Contact:** [Open an issue on GitHub](https://github.com/PhilipMay/stsb-multi-mt/issues/new)
### Dataset Summary
> STS Benchmark comprises a selection of the English datasets used in the STS tasks organized
> in the context of SemEval between 2012 and 2017. The selection of datasets include text from
> image captions, news headlines and user forums. ([source](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark))
These are different multilingual translations and the English original of the [STSbenchmark dataset](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark). Translation has been done with [deepl.com](https://www.deepl.com/). It can be used to train [sentence embeddings](https://github.com/UKPLab/sentence-transformers) like [T-Systems-onsite/cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer).
**Examples of Use**
Load German dev Dataset:
```python
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="de", split="dev")
```
Load English train Dataset:
```python
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="en", split="train")
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh
## Dataset Structure
### Data Instances
This dataset provides pairs of sentences and a score of their similarity.
score | 2 example sentences | explanation
------|---------|------------
5 | *The bird is bathing in the sink.<br/>Birdie is washing itself in the water basin.* | The two sentences are completely equivalent, as they mean the same thing.
4 | *Two boys on a couch are playing video games.<br/>Two boys are playing a video game.* | The two sentences are mostly equivalent, but some unimportant details differ.
3 | *John said he is considered a witness but not a suspect.<br/>“He is not a suspect anymore.” John said.* | The two sentences are roughly equivalent, but some important information differs/missing.
2 | *They flew out of the nest in groups.<br/>They flew into the nest together.* | The two sentences are not equivalent, but share some details.
1 | *The woman is playing the violin.<br/>The young lady enjoys listening to the guitar.* | The two sentences are not equivalent, but are on the same topic.
0 | *The black dog is running through the snow.<br/>A race car driver is driving his car through the mud.* | The two sentences are completely dissimilar.
An example:
```
{
"sentence1": "A man is playing a large flute.",
"sentence2": "A man is playing a flute.",
"similarity_score": 3.8
}
```
### Data Fields
- `sentence1`: The 1st sentence as a `str`.
- `sentence2`: The 2nd sentence as a `str`.
- `similarity_score`: The similarity score as a `float` which is `<= 5.0` and `>= 0.0`.
### Data Splits
- train with 5749 samples
- dev with 1500 samples
- test with 1379 sampples
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
See [LICENSE](https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE) and [download at original dataset](https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark).
### Citation Information
```
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
```
### Contributions
Thanks to [@PhilipMay](https://github.com/PhilipMay) for adding this dataset. |