The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: ParserError Message: Error tokenizing data. C error: Expected 1 fields in line 17, saw 3 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1995, in _prepare_split_single for _, table in generator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 195, in _generate_tables for batch_idx, df in enumerate(csv_file_reader): File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__ return self.get_chunk() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk return self.read(nrows=size) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read ) = self._engine.read( # type: ignore[attr-defined] File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read chunks = self._reader.read_low_memory(nrows) File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 17, saw 3 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
English
string | Sicilianu
string | Napizia
float64 | NLLB
float64 |
---|---|---|---|
Martial art (17) | Arti marziali (17) | 0.05 | 1.062759 |
They're always working. | travagghianu sempri. | 0.056 | 1.090703 |
The house of Cervantès | La casa di Cervantes | 0.057 | 1.054654 |
martial arts (2) | Arti marziali (2) | 0.058 | 1.052009 |
The Book has three parts: | Lu libbru havi tri parti: | 0.063 | 1.077978 |
there's no help | nun c'è aiutu | 0.064 | 1.069547 |
I cannot make anything. | Non pozzu fari nenti. | 0.066 | 1.050415 |
The Temple of Segesta | Lu tempiu di Segesta | 0.067 | 1.069931 |
Beer and Music. | Birra e musica. | 0.069 | 1.069277 |
when He Comes. | quannu veni. | 0.069 | 1.052197 |
The Pope Benedict XVI | Lu papa Binidittu XVI | 0.07 | 1.06155 |
Better than Before. | megghiu di prima. | 0.072 | 1.058336 |
the nobel prize | Lu premiu Nobel | 0.074 | 1.063659 |
the spaniels. | li Spagnoli. | 0.077 | 1.082544 |
" there's no job. | "Nun c'è travagghiu. | 0.077 | 1.063249 |
When it's cold, | quannu fa friddu, | 0.078 | 1.065728 |
The old man and the wine | Lu vecchiu e lu vinu | 0.079 | 1.075277 |
Mary (mother of Jesus) | Marìa (matri di Gesù) | 0.079 | 1.066615 |
the SUN and MOON. | Lu suli e la luna. | 0.08 | 1.068093 |
Documents Similar To 2a. | Documenti simili a 2a. | 0.081 | 1.068916 |
They are ALWAYS working. | travagghianu sempri. | 0.081 | 1.060073 |
with all the eyes. | cu tutti l'occhi. | 0.083 | 1.073766 |
History is the study of the Past. | La storia è lu studiu dû passatu. | 0.083 | 1.065063 |
The King of Naples. | Lu Re di Napuli. | 0.084 | 1.065322 |
The whole Earth is sacred. | Tutta la terra è Sacra. | 0.085 | 1.109744 |
the linguistic structure. | la struttura linguistica. | 0.085 | 1.096985 |
Why don't I see him? | Pirchì non lu vidu? | 0.085 | 1.094464 |
the whole earth is sacred. | Tutta la terra è Sacra. | 0.085 | 1.094438 |
the love of the world | L'Amuri di lu munnu | 0.086 | 1.071666 |
The Water And The Earth | L'Acqua e la terra | 0.086 | 1.05177 |
the water and the earth | L'Acqua e la terra | 0.086 | 1.05177 |
all of the ships | tutti li navi | 0.088 | 1.103765 |
It is MY system. | È lu me' sistema. | 0.088 | 1.091654 |
There is only today and tomorrow. | C'è sulu oggi e dumani. | 0.089 | 1.096153 |
greater than the world. | chiù granni di lu munnu. | 0.089 | 1.084696 |
the triumph of death. | lu triunfu di la morti. | 0.089 | 1.064142 |
From The Latin. | Di lu latinu. | 0.089 | 1.059083 |
the Crimea is Russian. | La Crimea è russa. | 0.09 | 1.093063 |
the Crimea is Russian. | la Crimea è russa. | 0.09 | 1.088262 |
The father's eyes | L'occhi dû patri | 0.092 | 1.087233 |
The daily beer. | La Birra quotidiana. | 0.092 | 1.074761 |
The Father's eyes | L'occhi dû patri | 0.092 | 1.057277 |
Principles of Language and Linguistics | Principi di Lingua e Linguistica | 0.095 | 1.058321 |
Province of Syracuse (SR) | Provincia di Siracusa (SR) | 0.096 | 1.053203 |
they will always work. | travagghianu sempri. | 0.096 | 1.050204 |
And of the holy spirit. | e dû Spiritu Santu. | 0.097 | 1.066807 |
They're the blood | sunnu lu sangu | 0.098 | 1.095851 |
When i don't see you | quannu nun ti vidu | 0.098 | 1.076929 |
They are speaking of the very same thing. | Parranu dâ stissa cosa. | 0.098 | 1.063668 |
He's name is Carl. | si chiama Carl. | 0.1 | 1.095906 |
there is a language | C'è na lingua | 0.101 | 1.093812 |
Martial Art and Dance | Arti marziali e Danza | 0.102 | 1.080163 |
the old man | Lu vecchiu | 0.102 | 1.07564 |
when it's strong. | Quannu è forti. | 0.105 | 1.119865 |
The Body & The Blood | Lu corpu e lu sangu | 0.106 | 1.059465 |
They begin to dance. | cumincianu a ballari. | 0.107 | 1.111235 |
red wine - 1/3 of a century; | vinu russu - 1/3 di un seculu; | 0.107 | 1.059396 |
why I am writing | Picchì scrivu | 0.108 | 1.09503 |
even after the death. | puru dopu la morti. | 0.108 | 1.076819 |
it with their tongue. | cu la lingua. | 0.108 | 1.066604 |
Russian language (1) | Lingua russa (1) | 0.108 | 1.061357 |
The bed is pink. | Lu lettu è rosa. | 0.109 | 1.116358 |
Tour of Sicily and Malta | Tour di sicilia e malta | 0.109 | 1.062672 |
Tour of Sicily and Malta | Tour di Sicilia e Malta | 0.109 | 1.062118 |
And the madness. | e la pazzia. | 0.109 | 1.050122 |
it with her tongue. | cu la lingua. | 0.111 | 1.050002 |
They are not Christian. | nun sunnu cristiani. | 0.112 | 1.081242 |
The sun and light | lu suli e la luci | 0.112 | 1.069427 |
I do not want to hear anything. | Non vogghiu sentiri nenti. | 0.112 | 1.056215 |
Results of the year." | Risultati di l'annu ." | 0.113 | 1.139222 |
the sun, the water, the land | lu suli, l'acqua, la terra | 0.114 | 1.061697 |
From the Other World. | di l'autru munnu. | 0.115 | 1.082156 |
Europe, Asia and the Crisis | L' Europa, l'Asia e la crisi | 0.115 | 1.08144 |
Political divisions of the United States - Wikipedia | Divisioni pulìtichi dî Stati Uniti - Wikipedia | 0.115 | 1.065908 |
Europe, Asia and the Crisis | L'Europa, l'Asia e la crisi | 0.115 | 1.061819 |
Elements of Latin Grammar | Elementi di grammatica latina | 0.116 | 1.069667 |
The living earth and the dead earth | La terra viva e la terra morta | 0.118 | 1.106442 |
It does change the world. | cancia lu munnu. | 0.118 | 1.081142 |
They're Not Christians. | nun sunnu cristiani. | 0.12 | 1.10247 |
now I can see you! | Ora ti pozzu vidiri! | 0.12 | 1.085774 |
Like water from the sea | comu l'acqua di lu mari | 0.12 | 1.054569 |
With the cops. | cu li sbirri. | 0.121 | 1.111603 |
With the Cops. | cu li sbirri. | 0.121 | 1.073397 |
lights and music. | luci e musica . | 0.122 | 1.059245 |
Calahorra, Spain | Calahorra , Spagna | 0.124 | 1.050361 |
The Administrative structure. | la struttura amministrativa. | 0.125 | 1.09373 |
how to conduct a research | Comu fari na ricerca | 0.125 | 1.07145 |
Why don't you speak anymore! | Picchì nun parri cchiù! | 0.126 | 1.0808 |
All the earth is Allah's. | Tutta la terra è di Allah. | 0.128 | 1.096948 |
Martial arts today. | Arti marziali oggi. | 0.129 | 1.131245 |
They aren't christians. | nun sunnu cristiani. | 0.129 | 1.08009 |
from the machine. | dâ machina. | 0.13 | 1.07872 |
and you didn't do anything. | e nun facisti nenti. | 0.13 | 1.059453 |
It has a population of 350 inhabitants. | Havi na pupulazzioni di 350 abbitanti. | 0.131 | 1.052669 |
It's the coldest season of the year. | È la staciuni cchiù friddu di l'annu. | 0.136 | 1.078507 |
Is it true or isn't it true? | E' veru o non è veru? | 0.137 | 1.060613 |
Documents Similar To 3a. | Documenti simili a 3a. | 0.137 | 1.057137 |
It's called pizza. | si chiama Pizza. | 0.139 | 1.111601 |
Francis II of The Two Sicilies | Franciscu II dî Dui Sicilî | 0.14 | 1.0685 |
Tag: The origin of the world | Tag: l'origini di lu munnu | 0.141 | 1.06802 |
Good Sicilian in the NLLB
"Language models are few shot learners" (Brown et al. 2020). And after drinking a few shots, several prominent translation models now slur their speech and garble a very strange version of Sicilian, one that does not appear in the NLLB dataset or anywhere in the Sicilian literary tradition.
Waking up the next morning, we all have a headache, so in lieu of aspirin, Project Napizia supplies this "Good Sicilian" data package to the NLP community. We hope it will help language models learn "Good Sicilian."
What is "Good Sicilian"?
Arba Sicula has been translating Sicilian poetry and prose into English since 1979. They have translated so much Sicilian language text that Project Napizia trained a neural machine Sicilian translation model with their bilingual journal (Wdowiak 2021 and Wdowiak 2022). In addition to the journal, Arba Sicula also publishes books on Sicilian language, literature, culture and history. And they organize poetry recitals, concerts, cultural events and an annual tour of Sicily.
"Good Sicilian" presents an 800-year literary tradition. "Good Sicilian" is the literary language described in the three grammar textbooks that Arba Sicula has published.
The NLLB team's search for "Good Sicilian"
"Good Sicilian" is what Facebook sought to collect during the No Language Left Behind project (2022). Project Napizia wishes that the NLLB team had contacted Arba Sicula. Instead, the NLLB team consulted people who made Sicilian one of "the more difficult languages" to work with. As the NLLB team explains on page 23 of their paper, their consultants provided seed data and validation data with "lower levels of industry-wide standardization."
In particular, the seed data reflected a strange new orthographic proposal that first appeared in 2017, while the lion's share of Sicilian text was written prior to 2017. The dissimilarity between seed data and available data caused the NLLB project to collect poor-quality Sicilian language data.
And because the validation data also reflects the strange new orthographic proposal, the dissimilarity of the validation data is not very helpful when evaluating a model trained on the NLLB data (or any Sicilian language data).
The "Good Sicilian" in the NLLB dataset
The purpose of this data package is to identify "Good Sicilian" translations in the NLLB dataset.
Upon visual inspection of the original collection, someone acquainted with the Sicilian language will immediately notice a "rhapsody of dialects." The surprise occurs because some of the good translations are not "Good Sicilian." In those cases, the Sicilian reflects a regional or local pronunciation -- what Sicilians and Italians call "dialect." Those sentences come from the Sicilian folklore tradition. It's "good Sicilian folklore," but for language modelling, we need "good Sicilian language." Fortunately, most of the NLLB data reflects the Sicilian literary tradition -- what people call "language."
The purpose of this data package is to identify the good translations that are "Good Sicilian," so that the NLP community can train better language models for the Sicilian language. For that purpose, Project Napizia used one of its translation models to score the pairs on the task of English-to-Sicilian translation and sorted the pairs by score.
Like golf, a low score is a better score. Napizia's scores come from Sockeye's scorer, which presents the negative log probability that the target subword sequence is a translation of the source subword sequence. So a score close to zero implies a probability close to one. A low score is a better score.
Napizia plays golf. Facebook plays basketball. Facebook's score measures similarity between sentences. At Facebook, a high score is a better score. We present both Facebook's score and Napizia's score. And we apologize in advance for the inevitable confusion.
Finally, for a convenient way to examine the best pairs, we provide a tab-separated CSV spreadsheet of the 50,000 pairs with the best Napizia score.
We hope researchers and practitioners will use this rescored NLLB data will help language models learn "Good Sicilian." We'll update this project with more public collections of "Good Sicilian."
And along with "Good Sicilian," we'll serve the NLP community a giant plate full of cannoli too! ;-)
Dataset Card -- scored English-Sicilian from NLLB-200vo
Dataset Summary
This dataset is a subset created from metadata for mined bitext released by Meta AI. The original contains bitext for 148 English-centric and 1465 non-English-centric language pairs using the stopes mining library and the LASER3 encoders (Heffernan et al, 2022).
Subsequently, Allen AI prepared bilingual collections for Hugging Face and for OPUS. The dataset presented here contains 1,057,469 pairs from the OPUS collection scored by Napizia on the task of English-to-Sicilian translation.
Licensing Information
The dataset is released under the terms of ODC-BY. By using this, you are also bound to the respective Terms of Use and License of the original source.
Sources
A. Fan et al (2020). "Beyond English-Centric Multilingual Machine Translation."
K. Hefferman et al (2022). "Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages."
NLLB Team et al (2022). "No Language Left Behind: Scaling Human-Centered Machine Translation."
H. Schwenk et al (2021). "CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web."
J. Tiedemann (2012). "Parallel Data, Tools and Interfaces in OPUS."
E. Wdowiak (2021). "Sicilian Translator: A Recipe for Low-Resource NMT."
E. Wdowiak (2022). "A Recipe for Low-Resource NMT."
- Downloads last month
- 37