Datasets:

ArXiv:
License:
Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ParserError
Message:      Error tokenizing data. C error: Expected 1 fields in line 17, saw 3

Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1995, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 195, in _generate_tables
                  for batch_idx, df in enumerate(csv_file_reader):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__
                  return self.get_chunk()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk
                  return self.read(nrows=size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read
                  ) = self._engine.read(  # type: ignore[attr-defined]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read
                  chunks = self._reader.read_low_memory(nrows)
                File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory
                File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error
              pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 17, saw 3
              
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

English
string
Sicilianu
string
Napizia
float64
NLLB
float64
Martial art (17)
Arti marziali (17)
0.05
1.062759
They're always working.
travagghianu sempri.
0.056
1.090703
The house of Cervantès
La casa di Cervantes
0.057
1.054654
martial arts (2)
Arti marziali (2)
0.058
1.052009
The Book has three parts:
Lu libbru havi tri parti:
0.063
1.077978
there's no help
nun c'è aiutu
0.064
1.069547
I cannot make anything.
Non pozzu fari nenti.
0.066
1.050415
The Temple of Segesta
Lu tempiu di Segesta
0.067
1.069931
Beer and Music.
Birra e musica.
0.069
1.069277
when He Comes.
quannu veni.
0.069
1.052197
The Pope Benedict XVI
Lu papa Binidittu XVI
0.07
1.06155
Better than Before.
megghiu di prima.
0.072
1.058336
the nobel prize
Lu premiu Nobel
0.074
1.063659
the spaniels.
li Spagnoli.
0.077
1.082544
" there's no job.
"Nun c'è travagghiu.
0.077
1.063249
When it's cold,
quannu fa friddu,
0.078
1.065728
The old man and the wine
Lu vecchiu e lu vinu
0.079
1.075277
Mary (mother of Jesus)
Marìa (matri di Gesù)
0.079
1.066615
the SUN and MOON.
Lu suli e la luna.
0.08
1.068093
Documents Similar To 2a.
Documenti simili a 2a.
0.081
1.068916
They are ALWAYS working.
travagghianu sempri.
0.081
1.060073
with all the eyes.
cu tutti l'occhi.
0.083
1.073766
History is the study of the Past.
La storia è lu studiu dû passatu.
0.083
1.065063
The King of Naples.
Lu Re di Napuli.
0.084
1.065322
The whole Earth is sacred.
Tutta la terra è Sacra.
0.085
1.109744
the linguistic structure.
la struttura linguistica.
0.085
1.096985
Why don't I see him?
Pirchì non lu vidu?
0.085
1.094464
the whole earth is sacred.
Tutta la terra è Sacra.
0.085
1.094438
the love of the world
L'Amuri di lu munnu
0.086
1.071666
The Water And The Earth
L'Acqua e la terra
0.086
1.05177
the water and the earth
L'Acqua e la terra
0.086
1.05177
all of the ships
tutti li navi
0.088
1.103765
It is MY system.
È lu me' sistema.
0.088
1.091654
There is only today and tomorrow.
C'è sulu oggi e dumani.
0.089
1.096153
greater than the world.
chiù granni di lu munnu.
0.089
1.084696
the triumph of death.
lu triunfu di la morti.
0.089
1.064142
From The Latin.
Di lu latinu.
0.089
1.059083
the Crimea is Russian.
La Crimea è russa.
0.09
1.093063
the Crimea is Russian.
la Crimea è russa.
0.09
1.088262
The father's eyes
L'occhi dû patri
0.092
1.087233
The daily beer.
La Birra quotidiana.
0.092
1.074761
The Father's eyes
L'occhi dû patri
0.092
1.057277
Principles of Language and Linguistics
Principi di Lingua e Linguistica
0.095
1.058321
Province of Syracuse (SR)
Provincia di Siracusa (SR)
0.096
1.053203
they will always work.
travagghianu sempri.
0.096
1.050204
And of the holy spirit.
e dû Spiritu Santu.
0.097
1.066807
They're the blood
sunnu lu sangu
0.098
1.095851
When i don't see you
quannu nun ti vidu
0.098
1.076929
They are speaking of the very same thing.
Parranu dâ stissa cosa.
0.098
1.063668
He's name is Carl.
si chiama Carl.
0.1
1.095906
there is a language
C'è na lingua
0.101
1.093812
Martial Art and Dance
Arti marziali e Danza
0.102
1.080163
the old man
Lu vecchiu
0.102
1.07564
when it's strong.
Quannu è forti.
0.105
1.119865
The Body & The Blood
Lu corpu e lu sangu
0.106
1.059465
They begin to dance.
cumincianu a ballari.
0.107
1.111235
red wine - 1/3 of a century;
vinu russu - 1/3 di un seculu;
0.107
1.059396
why I am writing
Picchì scrivu
0.108
1.09503
even after the death.
puru dopu la morti.
0.108
1.076819
it with their tongue.
cu la lingua.
0.108
1.066604
Russian language (1)
Lingua russa (1)
0.108
1.061357
The bed is pink.
Lu lettu è rosa.
0.109
1.116358
Tour of Sicily and Malta
Tour di sicilia e malta
0.109
1.062672
Tour of Sicily and Malta
Tour di Sicilia e Malta
0.109
1.062118
And the madness.
e la pazzia.
0.109
1.050122
it with her tongue.
cu la lingua.
0.111
1.050002
They are not Christian.
nun sunnu cristiani.
0.112
1.081242
The sun and light
lu suli e la luci
0.112
1.069427
I do not want to hear anything.
Non vogghiu sentiri nenti.
0.112
1.056215
Results of the year."
Risultati di l'annu ."
0.113
1.139222
the sun, the water, the land
lu suli, l'acqua, la terra
0.114
1.061697
From the Other World.
di l'autru munnu.
0.115
1.082156
Europe, Asia and the Crisis
L' Europa, l'Asia e la crisi
0.115
1.08144
Political divisions of the United States - Wikipedia
Divisioni pulìtichi dî Stati Uniti - Wikipedia
0.115
1.065908
Europe, Asia and the Crisis
L'Europa, l'Asia e la crisi
0.115
1.061819
Elements of Latin Grammar
Elementi di grammatica latina
0.116
1.069667
The living earth and the dead earth
La terra viva e la terra morta
0.118
1.106442
It does change the world.
cancia lu munnu.
0.118
1.081142
They're Not Christians.
nun sunnu cristiani.
0.12
1.10247
now I can see you!
Ora ti pozzu vidiri!
0.12
1.085774
Like water from the sea
comu l'acqua di lu mari
0.12
1.054569
With the cops.
cu li sbirri.
0.121
1.111603
With the Cops.
cu li sbirri.
0.121
1.073397
lights and music.
luci e musica .
0.122
1.059245
Calahorra, Spain
Calahorra , Spagna
0.124
1.050361
The Administrative structure.
la struttura amministrativa.
0.125
1.09373
how to conduct a research
Comu fari na ricerca
0.125
1.07145
Why don't you speak anymore!
Picchì nun parri cchiù!
0.126
1.0808
All the earth is Allah's.
Tutta la terra è di Allah.
0.128
1.096948
Martial arts today.
Arti marziali oggi.
0.129
1.131245
They aren't christians.
nun sunnu cristiani.
0.129
1.08009
from the machine.
dâ machina.
0.13
1.07872
and you didn't do anything.
e nun facisti nenti.
0.13
1.059453
It has a population of 350 inhabitants.
Havi na pupulazzioni di 350 abbitanti.
0.131
1.052669
It's the coldest season of the year.
È la staciuni cchiù friddu di l'annu.
0.136
1.078507
Is it true or isn't it true?
E' veru o non è veru?
0.137
1.060613
Documents Similar To 3a.
Documenti simili a 3a.
0.137
1.057137
It's called pizza.
si chiama Pizza.
0.139
1.111601
Francis II of The Two Sicilies
Franciscu II dî Dui Sicilî
0.14
1.0685
Tag: The origin of the world
Tag: l'origini di lu munnu
0.141
1.06802
End of preview.

Good Sicilian in the NLLB

"Language models are few shot learners" (Brown et al. 2020). And after drinking a few shots, several prominent translation models now slur their speech and garble a very strange version of Sicilian, one that does not appear in the NLLB dataset or anywhere in the Sicilian literary tradition.

Waking up the next morning, we all have a headache, so in lieu of aspirin, Project Napizia supplies this "Good Sicilian" data package to the NLP community. We hope it will help language models learn "Good Sicilian."

What is "Good Sicilian"?

Arba Sicula has been translating Sicilian poetry and prose into English since 1979. They have translated so much Sicilian language text that Project Napizia trained a neural machine Sicilian translation model with their bilingual journal (Wdowiak 2021 and Wdowiak 2022). In addition to the journal, Arba Sicula also publishes books on Sicilian language, literature, culture and history. And they organize poetry recitals, concerts, cultural events and an annual tour of Sicily.

"Good Sicilian" presents an 800-year literary tradition. "Good Sicilian" is the literary language described in the three grammar textbooks that Arba Sicula has published.

The NLLB team's search for "Good Sicilian"

"Good Sicilian" is what Facebook sought to collect during the No Language Left Behind project (2022). Project Napizia wishes that the NLLB team had contacted Arba Sicula. Instead, the NLLB team consulted people who made Sicilian one of "the more difficult languages" to work with. As the NLLB team explains on page 23 of their paper, their consultants provided seed data and validation data with "lower levels of industry-wide standardization."

In particular, the seed data reflected a strange new orthographic proposal that first appeared in 2017, while the lion's share of Sicilian text was written prior to 2017. The dissimilarity between seed data and available data caused the NLLB project to collect poor-quality Sicilian language data.

And because the validation data also reflects the strange new orthographic proposal, the dissimilarity of the validation data is not very helpful when evaluating a model trained on the NLLB data (or any Sicilian language data).

The "Good Sicilian" in the NLLB dataset

The purpose of this data package is to identify "Good Sicilian" translations in the NLLB dataset.

Upon visual inspection of the original collection, someone acquainted with the Sicilian language will immediately notice a "rhapsody of dialects." The surprise occurs because some of the good translations are not "Good Sicilian." In those cases, the Sicilian reflects a regional or local pronunciation -- what Sicilians and Italians call "dialect." Those sentences come from the Sicilian folklore tradition. It's "good Sicilian folklore," but for language modelling, we need "good Sicilian language." Fortunately, most of the NLLB data reflects the Sicilian literary tradition -- what people call "language."

The purpose of this data package is to identify the good translations that are "Good Sicilian," so that the NLP community can train better language models for the Sicilian language. For that purpose, Project Napizia used one of its translation models to score the pairs on the task of English-to-Sicilian translation and sorted the pairs by score.

Like golf, a low score is a better score. Napizia's scores come from Sockeye's scorer, which presents the negative log probability that the target subword sequence is a translation of the source subword sequence. So a score close to zero implies a probability close to one. A low score is a better score.

Napizia plays golf. Facebook plays basketball. Facebook's score measures similarity between sentences. At Facebook, a high score is a better score. We present both Facebook's score and Napizia's score. And we apologize in advance for the inevitable confusion.

Finally, for a convenient way to examine the best pairs, we provide a tab-separated CSV spreadsheet of the 50,000 pairs with the best Napizia score.

We hope researchers and practitioners will use this rescored NLLB data will help language models learn "Good Sicilian." We'll update this project with more public collections of "Good Sicilian."

And along with "Good Sicilian," we'll serve the NLP community a giant plate full of cannoli too! ;-)

Dataset Card -- scored English-Sicilian from NLLB-200vo

Dataset Summary

This dataset is a subset created from metadata for mined bitext released by Meta AI. The original contains bitext for 148 English-centric and 1465 non-English-centric language pairs using the stopes mining library and the LASER3 encoders (Heffernan et al, 2022).

Subsequently, Allen AI prepared bilingual collections for Hugging Face and for OPUS. The dataset presented here contains 1,057,469 pairs from the OPUS collection scored by Napizia on the task of English-to-Sicilian translation.

Licensing Information

The dataset is released under the terms of ODC-BY. By using this, you are also bound to the respective Terms of Use and License of the original source.

Sources

A. Fan et al (2020). "Beyond English-Centric Multilingual Machine Translation."

K. Hefferman et al (2022). "Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages."

NLLB Team et al (2022). "No Language Left Behind: Scaling Human-Centered Machine Translation."

H. Schwenk et al (2021). "CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web."

J. Tiedemann (2012). "Parallel Data, Tools and Interfaces in OPUS."

E. Wdowiak (2021). "Sicilian Translator: A Recipe for Low-Resource NMT."

E. Wdowiak (2022). "A Recipe for Low-Resource NMT."

Downloads last month
37