File size: 7,223 Bytes
304b1ab 2351499 c86db9a 2351499 1488a42 2351499 2cc2d03 2351499 2cc2d03 2351499 7368892 2351499 fff26c3 2351499 2cc2d03 c86db9a 2cc2d03 2351499 6d04143 7368892 6d04143 2351499 fff26c3 2cc2d03 2351499 fff26c3 2351499 fff26c3 2cc2d03 2351499 fff26c3 6d04143 7368892 2351499 fff26c3 2cc2d03 304b1ab 2db37a2 fff26c3 2351499 fff26c3 2351499 fff26c3 2351499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
#!/usr/bin/env python3
"""
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the classes and each frame.
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir --classes C1 .. Cn [--class_weights W1 .. Wn] -o results.csv
"""
import sys
import os
from loggez import loggez_logger as logger
from pathlib import Path
from argparse import ArgumentParser, Namespace
from tempfile import TemporaryDirectory
from multiprocessing import Pool
from functools import partial
from torchmetrics.functional.classification import multiclass_stat_scores
from tqdm import tqdm
import torch as tr
import numpy as np
import pandas as pd
sys.path.append(Path(__file__).parents[1].__str__())
from dronescapes_reader import MultiTaskDataset
from dronescapes_reader.dronescapes_representations import SemanticRepresentation
def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
iou = tp / (tp + fp + fn)
return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T
def compute_metrics_by_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
df = df.query("class_name == @class_name").drop(columns="class_name")
df.loc["all"] = df.sum()
df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
df.insert(0, "class_name", class_name)
df = df.fillna(0).round(3)
return df
def _do_one(i: int, reader: MultiTaskDataset, num_classes: int) -> tuple[tr.Tensor, str]:
data, name = reader[i][0:2]
y = data["pred"].argmax(-1) if data["pred"].dtype != tr.int64 else data["pred"]
gt = data["gt"].argmax(-1) if data["gt"].dtype != tr.int64 else data["gt"]
return multiclass_stat_scores(y, gt, num_classes=num_classes, average=None)[:, 0:4], name
def compute_raw_stats_per_frame(reader: MultiTaskDataset, classes: list[str], n_workers: int = 1) -> pd.DataFrame:
res = tr.zeros((len(reader), len(classes), 4)).long() # (N, NC, 4)
map_fn = map if n_workers == 1 else Pool(n_workers).imap
do_one_fn = partial(_do_one, reader=reader, num_classes=len(classes))
map_res = list(tqdm(map_fn(do_one_fn, range(len(reader))), total=len(reader)))
res, index = tr.stack([x[0] for x in map_res]).reshape(len(reader) * len(classes), 4), [x[1] for x in map_res]
df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
return df
def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
class_weights: list[float]) -> tuple[float, float]:
df = res.iloc[[x.startswith(scene) for x in res.index]]
# aggregate for this class all the individual predictions
df_scene = df[["class_name", "tp", "fp", "tn", "fn"]].groupby("class_name") \
.apply(lambda x: x.sum(), include_groups=False).loc[classes]
df_metrics = compute_metrics(df_scene["tp"], df_scene["fp"], df_scene["tn"], df_scene["fn"])
iou_weighted = (df_metrics["iou"] * class_weights).sum()
f1_weighted = (df_metrics["f1"] * class_weights).sum()
return scene, iou_weighted, f1_weighted
def _check_and_symlink_dirs(y_dir: Path, gt_dir: Path) -> Path:
"""checks whether the two provided paths are actual full of npz directories and links them together in a tmp dir"""
assert (l := {x.name for x in y_dir.iterdir()}) == (r := {x.name for x in gt_dir.iterdir()}), f"{l} \n vs \n {r}"
assert all(x.endswith(".npz") for x in [*l, *r]), f"Not dirs of only .npz files: {l} \n {r}"
(temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
os.symlink(y_dir, temp_dir / "pred")
os.symlink(gt_dir, temp_dir / "gt")
return temp_dir
def get_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("y_dir", type=lambda p: Path(p).absolute())
parser.add_argument("gt_dir", type=lambda p: Path(p).absolute())
parser.add_argument("--output_path", "-o", type=Path, required=True)
parser.add_argument("--classes", required=True, nargs="+")
parser.add_argument("--class_weights", nargs="+", type=float)
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--n_workers", type=int, default=1)
args = parser.parse_args()
if args.class_weights is None:
logger.info("No class weights provided, defaulting to equal weights.")
args.class_weights = [1 / len(args.classes)] * len(args.classes)
assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
if len(args.scenes) > 0:
logger.info(f"Scenes: {args.scenes}")
if args.output_path.exists() and args.overwrite:
os.remove(args.output_path)
assert args.n_workers >= 1 and isinstance(args.n_workers, int), args.n_workers
return args
def main(args: Namespace):
# setup to put both directories in the same parent directory for the reader to work.
temp_dir = _check_and_symlink_dirs(args.y_dir, args.gt_dir)
pred_repr = SemanticRepresentation("pred", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
gt_repr = SemanticRepresentation("gt", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
reader = MultiTaskDataset(temp_dir, task_names=["pred", "gt"], task_types={"pred": pred_repr, "gt": gt_repr},
handle_missing_data="drop", normalization=None)
assert (a := len(reader.files_per_repr["gt"])) == (b := len(reader.files_per_repr["pred"])), f"{a} vs {b}"
# Compute TP, FP, TN, FN for each frame
raw_stats = compute_raw_stats_per_frame(reader, args.classes, args.n_workers)
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
Path(args.output_path).parent.mkdir(exist_ok=True, parents=True)
raw_stats.to_csv(args.output_path)
# Compute Precision, Recall, F1, IoU for each class and put them together in the same df.
metrics_per_class = pd.concat([compute_metrics_by_class(raw_stats, class_name) for class_name in args.classes])
# Aggregate the class-level metrics to the final metrics based on the class weights (compute globally by stats)
final_agg = []
for scene in args.scenes: # if we have >1 scene in the test set, aggregate the results for each of them separately
final_agg.append(compute_final_per_scene(metrics_per_class, scene, args.classes, args.class_weights))
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
if len(args.scenes) > 1:
final_agg.loc["mean"] = final_agg.mean()
final_agg = (final_agg * 100).round(3)
print(final_agg)
if __name__ == "__main__":
main(get_args())
|