File size: 7,223 Bytes
304b1ab
2351499
c86db9a
 
2351499
 
 
1488a42
2351499
 
 
2cc2d03
2351499
 
2cc2d03
2351499
 
 
 
 
7368892
 
2351499
 
 
 
 
 
 
 
fff26c3
2351499
 
 
 
 
 
 
2cc2d03
 
 
 
 
 
 
c86db9a
2cc2d03
 
 
 
 
 
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d04143
 
7368892
6d04143
 
 
 
 
 
2351499
 
 
 
 
 
 
 
fff26c3
2cc2d03
2351499
 
fff26c3
2351499
 
 
 
 
 
fff26c3
 
2cc2d03
2351499
 
 
fff26c3
6d04143
7368892
 
 
 
 
2351499
fff26c3
2cc2d03
304b1ab
 
 
2db37a2
fff26c3
 
2351499
fff26c3
2351499
fff26c3
 
2351499
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
"""
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the classes and each frame.
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir --classes C1 .. Cn [--class_weights W1 .. Wn] -o results.csv
"""
import sys
import os
from loggez import loggez_logger as logger
from pathlib import Path
from argparse import ArgumentParser, Namespace
from tempfile import TemporaryDirectory
from multiprocessing import Pool
from functools import partial
from torchmetrics.functional.classification import multiclass_stat_scores
from tqdm import tqdm
import torch as tr
import numpy as np
import pandas as pd

sys.path.append(Path(__file__).parents[1].__str__())
from dronescapes_reader import MultiTaskDataset
from dronescapes_reader.dronescapes_representations import SemanticRepresentation

def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
    precision = tp / (tp + fp)
    recall = tp / (tp + fn)
    f1 = 2 * precision * recall / (precision + recall)
    iou = tp / (tp + fp + fn)
    return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T

def compute_metrics_by_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
    df = df.query("class_name == @class_name").drop(columns="class_name")
    df.loc["all"] = df.sum()
    df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
    df.insert(0, "class_name", class_name)
    df = df.fillna(0).round(3)
    return df

def _do_one(i: int, reader: MultiTaskDataset, num_classes: int) -> tuple[tr.Tensor, str]:
    data, name = reader[i][0:2]
    y = data["pred"].argmax(-1) if data["pred"].dtype != tr.int64 else data["pred"]
    gt = data["gt"].argmax(-1) if data["gt"].dtype != tr.int64 else data["gt"]
    return multiclass_stat_scores(y, gt, num_classes=num_classes, average=None)[:, 0:4], name

def compute_raw_stats_per_frame(reader: MultiTaskDataset, classes: list[str], n_workers: int = 1) -> pd.DataFrame:
    res = tr.zeros((len(reader), len(classes), 4)).long() # (N, NC, 4)

    map_fn = map if n_workers == 1 else Pool(n_workers).imap
    do_one_fn = partial(_do_one, reader=reader, num_classes=len(classes))
    map_res = list(tqdm(map_fn(do_one_fn, range(len(reader))), total=len(reader)))
    res, index = tr.stack([x[0] for x in map_res]).reshape(len(reader) * len(classes), 4), [x[1] for x in map_res]

    df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
    df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
    return df

def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
                            class_weights: list[float]) -> tuple[float, float]:
    df = res.iloc[[x.startswith(scene) for x in res.index]]
    # aggregate for this class all the individual predictions
    df_scene = df[["class_name", "tp", "fp", "tn", "fn"]].groupby("class_name") \
        .apply(lambda x: x.sum(), include_groups=False).loc[classes]
    df_metrics = compute_metrics(df_scene["tp"], df_scene["fp"], df_scene["tn"], df_scene["fn"])
    iou_weighted = (df_metrics["iou"] * class_weights).sum()
    f1_weighted = (df_metrics["f1"] * class_weights).sum()
    return scene, iou_weighted, f1_weighted

def _check_and_symlink_dirs(y_dir: Path, gt_dir: Path) -> Path:
    """checks whether the two provided paths are actual full of npz directories and links them together in a tmp dir"""
    assert (l := {x.name for x in y_dir.iterdir()}) == (r := {x.name for x in gt_dir.iterdir()}), f"{l} \n vs \n {r}"
    assert all(x.endswith(".npz") for x in [*l, *r]), f"Not dirs of only .npz files: {l} \n {r}"
    (temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
    os.symlink(y_dir, temp_dir / "pred")
    os.symlink(gt_dir, temp_dir / "gt")
    return temp_dir

def get_args() -> Namespace:
    parser = ArgumentParser()
    parser.add_argument("y_dir", type=lambda p: Path(p).absolute())
    parser.add_argument("gt_dir", type=lambda p: Path(p).absolute())
    parser.add_argument("--output_path", "-o", type=Path, required=True)
    parser.add_argument("--classes", required=True, nargs="+")
    parser.add_argument("--class_weights", nargs="+", type=float)
    parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
    parser.add_argument("--overwrite", action="store_true")
    parser.add_argument("--n_workers", type=int, default=1)
    args = parser.parse_args()
    if args.class_weights is None:
        logger.info("No class weights provided, defaulting to equal weights.")
        args.class_weights = [1 / len(args.classes)] * len(args.classes)
    assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
    assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
    assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
    if len(args.scenes) > 0:
        logger.info(f"Scenes: {args.scenes}")
    if args.output_path.exists() and args.overwrite:
        os.remove(args.output_path)
    assert args.n_workers >= 1 and isinstance(args.n_workers, int), args.n_workers
    return args

def main(args: Namespace):
    # setup to put both directories in the same parent directory for the reader to work.
    temp_dir = _check_and_symlink_dirs(args.y_dir, args.gt_dir)
    pred_repr = SemanticRepresentation("pred", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
    gt_repr = SemanticRepresentation("gt", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
    reader = MultiTaskDataset(temp_dir, task_names=["pred", "gt"], task_types={"pred": pred_repr, "gt": gt_repr},
                              handle_missing_data="drop", normalization=None)
    assert (a := len(reader.files_per_repr["gt"])) == (b := len(reader.files_per_repr["pred"])), f"{a} vs {b}"

    # Compute TP, FP, TN, FN for each frame
    raw_stats = compute_raw_stats_per_frame(reader, args.classes, args.n_workers)
    logger.info(f"Stored raw metrics file to: '{args.output_path}'")
    Path(args.output_path).parent.mkdir(exist_ok=True, parents=True)
    raw_stats.to_csv(args.output_path)

    # Compute Precision, Recall, F1, IoU for each class and put them together in the same df.
    metrics_per_class = pd.concat([compute_metrics_by_class(raw_stats, class_name) for class_name in args.classes])

    # Aggregate the class-level metrics to the final metrics based on the class weights (compute globally by stats)
    final_agg = []
    for scene in args.scenes: # if we have >1 scene in the test set, aggregate the results for each of them separately
        final_agg.append(compute_final_per_scene(metrics_per_class, scene, args.classes, args.class_weights))
    final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
    if len(args.scenes) > 1:
        final_agg.loc["mean"] = final_agg.mean()
    final_agg = (final_agg * 100).round(3)
    print(final_agg)

if __name__ == "__main__":
    main(get_args())