fixes in scripts
Browse files
README.md
CHANGED
@@ -290,7 +290,7 @@ outputs one csv file with predictions for each npz file, the scenes are used for
|
|
290 |
|
291 |
```
|
292 |
python scripts/evaluate_semantic_segmentation.py \
|
293 |
-
data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \
|
294 |
data/test_set_annotated_only/semantic_segprop8/ \
|
295 |
-o results.csv \
|
296 |
--classes land forest residential road little-objects water sky hill \
|
|
|
290 |
|
291 |
```
|
292 |
python scripts/evaluate_semantic_segmentation.py \
|
293 |
+
data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \
|
294 |
data/test_set_annotated_only/semantic_segprop8/ \
|
295 |
-o results.csv \
|
296 |
--classes land forest residential road little-objects water sky hill \
|
dronescapes_reader/dronescapes_representations.py
CHANGED
@@ -182,10 +182,9 @@ mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 1
|
|
182 |
[0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
|
183 |
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
|
184 |
|
185 |
-
class
|
186 |
-
def __init__(self, dep: NpzRepresentation):
|
187 |
-
super().__init__(
|
188 |
-
dependencies=[dep], merge_fn=self._merge_fn, n_channels=8)
|
189 |
self.mapping = {
|
190 |
"land": ["Terrain", "Sand", "Snow"],
|
191 |
"forest": ["Vegetation"],
|
@@ -236,7 +235,8 @@ _tasks: list[NpzRepresentation] = [ # some pre-baked representations
|
|
236 |
SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
|
237 |
m2f_mapillary := SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
|
238 |
color_map=mapillary_color_map),
|
239 |
-
|
|
|
240 |
NpzRepresentation("softseg_gb", 3),
|
241 |
]
|
242 |
dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}
|
|
|
182 |
[0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
|
183 |
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
|
184 |
|
185 |
+
class SemanticMask2FormerMapillaryMapped(TaskMapper):
|
186 |
+
def __init__(self, name: str, dep: NpzRepresentation):
|
187 |
+
super().__init__(name, dependencies=[dep], merge_fn=self._merge_fn, n_channels=8)
|
|
|
188 |
self.mapping = {
|
189 |
"land": ["Terrain", "Sand", "Snow"],
|
190 |
"forest": ["Vegetation"],
|
|
|
235 |
SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
|
236 |
m2f_mapillary := SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
|
237 |
color_map=mapillary_color_map),
|
238 |
+
SemanticRepresentation("semantic_mask2former_swin_mapillary_converted", classes=8, color_map=color_map_8classes),
|
239 |
+
SemanticMask2FormerMapillaryMapped("semantic_mask2former_swin_mapillary_mapped", m2f_mapillary),
|
240 |
NpzRepresentation("softseg_gb", 3),
|
241 |
]
|
242 |
dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}
|
dronescapes_reader/multitask_dataset.py
CHANGED
@@ -240,7 +240,7 @@ class MultiTaskDataset(Dataset):
|
|
240 |
|
241 |
if self.handle_missing_data == "drop":
|
242 |
b4 = len(names_to_tasks)
|
243 |
-
names_to_tasks = {k: v for k, v in names_to_tasks if len(v) == len(relevant_tasks_for_files)}
|
244 |
logger.debug(f"Dropped {b4 - len(names_to_tasks)} files not in all tasks")
|
245 |
all_names: list[str] = natsorted(names_to_tasks.keys())
|
246 |
logger.info(f"Total files: {len(names_to_tasks)} per task across {len(task_names)} tasks")
|
|
|
240 |
|
241 |
if self.handle_missing_data == "drop":
|
242 |
b4 = len(names_to_tasks)
|
243 |
+
names_to_tasks = {k: v for k, v in names_to_tasks.items() if len(v) == len(relevant_tasks_for_files)}
|
244 |
logger.debug(f"Dropped {b4 - len(names_to_tasks)} files not in all tasks")
|
245 |
all_names: list[str] = natsorted(names_to_tasks.keys())
|
246 |
logger.info(f"Total files: {len(names_to_tasks)} per task across {len(task_names)} tasks")
|
scripts/evaluate_semantic_segmentation.py
CHANGED
@@ -18,7 +18,8 @@ import numpy as np
|
|
18 |
import pandas as pd
|
19 |
|
20 |
sys.path.append(Path(__file__).parents[1].__str__())
|
21 |
-
from dronescapes_reader import MultiTaskDataset
|
|
|
22 |
|
23 |
def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
|
24 |
precision = tp / (tp + fp)
|
@@ -66,7 +67,7 @@ def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
|
|
66 |
|
67 |
def _check_and_symlink_dirs(y_dir: Path, gt_dir: Path) -> Path:
|
68 |
"""checks whether the two provided paths are actual full of npz directories and links them together in a tmp dir"""
|
69 |
-
assert (l :=
|
70 |
assert all(x.endswith(".npz") for x in [*l, *r]), f"Not dirs of only .npz files: {l} \n {r}"
|
71 |
(temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
|
72 |
os.symlink(y_dir, temp_dir / "pred")
|
@@ -100,9 +101,11 @@ def get_args() -> Namespace:
|
|
100 |
def main(args: Namespace):
|
101 |
# setup to put both directories in the same parent directory for the reader to work.
|
102 |
temp_dir = _check_and_symlink_dirs(args.y_dir, args.gt_dir)
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
106 |
|
107 |
# Compute TP, FP, TN, FN for each frame
|
108 |
raw_stats = compute_raw_stats_per_frame(reader, args.classes, args.n_workers)
|
|
|
18 |
import pandas as pd
|
19 |
|
20 |
sys.path.append(Path(__file__).parents[1].__str__())
|
21 |
+
from dronescapes_reader import MultiTaskDataset
|
22 |
+
from dronescapes_reader.dronescapes_representations import SemanticRepresentation
|
23 |
|
24 |
def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
|
25 |
precision = tp / (tp + fp)
|
|
|
67 |
|
68 |
def _check_and_symlink_dirs(y_dir: Path, gt_dir: Path) -> Path:
|
69 |
"""checks whether the two provided paths are actual full of npz directories and links them together in a tmp dir"""
|
70 |
+
assert (l := {x.name for x in y_dir.iterdir()}) == (r := {x.name for x in gt_dir.iterdir()}), f"{l} \n vs \n {r}"
|
71 |
assert all(x.endswith(".npz") for x in [*l, *r]), f"Not dirs of only .npz files: {l} \n {r}"
|
72 |
(temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
|
73 |
os.symlink(y_dir, temp_dir / "pred")
|
|
|
101 |
def main(args: Namespace):
|
102 |
# setup to put both directories in the same parent directory for the reader to work.
|
103 |
temp_dir = _check_and_symlink_dirs(args.y_dir, args.gt_dir)
|
104 |
+
pred_repr = SemanticRepresentation("pred", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
105 |
+
gt_repr = SemanticRepresentation("gt", classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
106 |
+
reader = MultiTaskDataset(temp_dir, task_names=["pred", "gt"], task_types={"pred": pred_repr, "gt": gt_repr},
|
107 |
+
handle_missing_data="drop", normalization=None)
|
108 |
+
assert (a := len(reader.files_per_repr["gt"])) == (b := len(reader.files_per_repr["pred"])), f"{a} vs {b}"
|
109 |
|
110 |
# Compute TP, FP, TN, FN for each frame
|
111 |
raw_stats = compute_raw_stats_per_frame(reader, args.classes, args.n_workers)
|