--n_workers to eval script bcoz y not
Browse files
dronescapes_reader/multitask_dataset.py
CHANGED
@@ -70,7 +70,7 @@ class MultiTaskDataset(Dataset):
|
|
70 |
"""
|
71 |
|
72 |
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
|
73 |
-
files_suffix: str = "npz", task_types: dict[str, type] = None):
|
74 |
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
|
75 |
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
|
76 |
f"Invalid handle_missing_data mode: {handle_missing_data}"
|
@@ -94,13 +94,19 @@ class MultiTaskDataset(Dataset):
|
|
94 |
self._tasks: list[NpzRepresentation] | None = None
|
95 |
self.name_to_task = {task.name: task for task in self.tasks}
|
96 |
logger.info(f"Tasks used in this dataset: {self.task_names}")
|
97 |
-
|
98 |
-
_default_val = float("nan") if handle_missing_data == "fill_nan" else 0
|
99 |
-
self._defaults = {task: None if handle_missing_data == "fill_none" else
|
100 |
-
tr.full(self.data_shape[task], _default_val) for task in self.task_names}
|
101 |
|
102 |
# Public methods and properties
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
@property
|
105 |
def data_shape(self) -> dict[str, tuple[int, ...]]:
|
106 |
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
|
@@ -214,7 +220,7 @@ class MultiTaskDataset(Dataset):
|
|
214 |
for task in self.tasks:
|
215 |
file_path = self.files_per_repr[task.name][index]
|
216 |
file_path = None if file_path is None or not (fpr := file_path.resolve()).exists() else fpr
|
217 |
-
res[task.name] = task.load_from_disk(file_path) if file_path is not None else self.
|
218 |
return (res, item_name, self.task_names)
|
219 |
|
220 |
def __len__(self) -> int:
|
|
|
70 |
"""
|
71 |
|
72 |
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
|
73 |
+
files_suffix: str = "npz", task_types: dict[str, type] | None = None):
|
74 |
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
|
75 |
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
|
76 |
f"Invalid handle_missing_data mode: {handle_missing_data}"
|
|
|
94 |
self._tasks: list[NpzRepresentation] | None = None
|
95 |
self.name_to_task = {task.name: task for task in self.tasks}
|
96 |
logger.info(f"Tasks used in this dataset: {self.task_names}")
|
97 |
+
self._default_vals: dict[str, tr.Tensor] | None = None
|
|
|
|
|
|
|
98 |
|
99 |
# Public methods and properties
|
100 |
|
101 |
+
@property
|
102 |
+
def default_vals(self) -> dict[str, tr.Tensor]:
|
103 |
+
"""default values for __getitem__ if item is not on disk but we retrieve a full batch anyway"""
|
104 |
+
if self._default_vals is None:
|
105 |
+
_default_val = float("nan") if self.handle_missing_data == "fill_nan" else 0
|
106 |
+
self._default_vals = {task: None if self.handle_missing_data == "fill_none" else
|
107 |
+
tr.full(self.data_shape[task], _default_val) for task in self.task_names}
|
108 |
+
return self._default_vals
|
109 |
+
|
110 |
@property
|
111 |
def data_shape(self) -> dict[str, tuple[int, ...]]:
|
112 |
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
|
|
|
220 |
for task in self.tasks:
|
221 |
file_path = self.files_per_repr[task.name][index]
|
222 |
file_path = None if file_path is None or not (fpr := file_path.resolve()).exists() else fpr
|
223 |
+
res[task.name] = task.load_from_disk(file_path) if file_path is not None else self.default_vals[task.name]
|
224 |
return (res, item_name, self.task_names)
|
225 |
|
226 |
def __len__(self) -> int:
|
scripts/evaluate_semantic_segmentation.py
CHANGED
@@ -9,9 +9,10 @@ from loguru import logger
|
|
9 |
from pathlib import Path
|
10 |
from argparse import ArgumentParser, Namespace
|
11 |
from tempfile import TemporaryDirectory
|
|
|
12 |
from functools import partial
|
13 |
from torchmetrics.functional.classification import multiclass_stat_scores
|
14 |
-
from tqdm import
|
15 |
import torch as tr
|
16 |
import numpy as np
|
17 |
import pandas as pd
|
@@ -34,16 +35,20 @@ def compute_metrics_by_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
|
|
34 |
df = df.fillna(0).round(3)
|
35 |
return df
|
36 |
|
37 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
res = tr.zeros((len(reader), len(classes), 4)).long() # (N, NC, 4)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
index.append(x[1])
|
46 |
-
res = res.reshape(len(reader) * len(classes), 4)
|
47 |
df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
|
48 |
df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
|
49 |
return df
|
@@ -77,6 +82,7 @@ def get_args() -> Namespace:
|
|
77 |
parser.add_argument("--class_weights", nargs="+", type=float)
|
78 |
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
|
79 |
parser.add_argument("--overwrite", action="store_true")
|
|
|
80 |
args = parser.parse_args()
|
81 |
if args.class_weights is None:
|
82 |
logger.info("No class weights provided, defaulting to equal weights.")
|
@@ -88,6 +94,7 @@ def get_args() -> Namespace:
|
|
88 |
logger.info(f"Scenes: {args.scenes}")
|
89 |
if args.output_path.exists() and args.overwrite:
|
90 |
os.remove(args.output_path)
|
|
|
91 |
return args
|
92 |
|
93 |
def main(args: Namespace):
|
@@ -98,7 +105,7 @@ def main(args: Namespace):
|
|
98 |
assert (a := len(reader.all_files_per_repr["gt"])) == (b := len(reader.all_files_per_repr["pred"])), f"{a} vs {b}"
|
99 |
|
100 |
# Compute TP, FP, TN, FN for each frame
|
101 |
-
raw_stats = compute_raw_stats_per_frame(reader, args.classes)
|
102 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
103 |
Path(args.output_path).parent.mkdir(exist_ok=True, parents=True)
|
104 |
raw_stats.to_csv(args.output_path)
|
|
|
9 |
from pathlib import Path
|
10 |
from argparse import ArgumentParser, Namespace
|
11 |
from tempfile import TemporaryDirectory
|
12 |
+
from multiprocessing import Pool
|
13 |
from functools import partial
|
14 |
from torchmetrics.functional.classification import multiclass_stat_scores
|
15 |
+
from tqdm import tqdm
|
16 |
import torch as tr
|
17 |
import numpy as np
|
18 |
import pandas as pd
|
|
|
35 |
df = df.fillna(0).round(3)
|
36 |
return df
|
37 |
|
38 |
+
def _do_one(i: int, reader: MultiTaskDataset, num_classes: int) -> tuple[tr.Tensor, str]:
|
39 |
+
data, name = reader[i][0:2]
|
40 |
+
y = data["pred"].argmax(-1) if data["pred"].dtype != tr.int64 else data["pred"]
|
41 |
+
gt = data["gt"].argmax(-1) if data["gt"].dtype != tr.int64 else data["gt"]
|
42 |
+
return multiclass_stat_scores(y, gt, num_classes=num_classes, average=None)[:, 0:4], name
|
43 |
+
|
44 |
+
def compute_raw_stats_per_frame(reader: MultiTaskDataset, classes: list[str], n_workers: int = 1) -> pd.DataFrame:
|
45 |
res = tr.zeros((len(reader), len(classes), 4)).long() # (N, NC, 4)
|
46 |
+
|
47 |
+
map_fn = map if n_workers == 1 else Pool(n_workers).imap
|
48 |
+
do_one_fn = partial(_do_one, reader=reader, num_classes=len(classes))
|
49 |
+
map_res = list(tqdm(map_fn(do_one_fn, range(len(reader))), total=len(reader)))
|
50 |
+
res, index = tr.stack([x[0] for x in map_res]).reshape(len(reader) * len(classes), 4), [x[1] for x in map_res]
|
51 |
+
|
|
|
|
|
52 |
df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
|
53 |
df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
|
54 |
return df
|
|
|
82 |
parser.add_argument("--class_weights", nargs="+", type=float)
|
83 |
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
|
84 |
parser.add_argument("--overwrite", action="store_true")
|
85 |
+
parser.add_argument("--n_workers", type=int, default=1)
|
86 |
args = parser.parse_args()
|
87 |
if args.class_weights is None:
|
88 |
logger.info("No class weights provided, defaulting to equal weights.")
|
|
|
94 |
logger.info(f"Scenes: {args.scenes}")
|
95 |
if args.output_path.exists() and args.overwrite:
|
96 |
os.remove(args.output_path)
|
97 |
+
assert args.n_workers >= 1 and isinstance(args.n_workers, int), args.n_workers
|
98 |
return args
|
99 |
|
100 |
def main(args: Namespace):
|
|
|
105 |
assert (a := len(reader.all_files_per_repr["gt"])) == (b := len(reader.all_files_per_repr["pred"])), f"{a} vs {b}"
|
106 |
|
107 |
# Compute TP, FP, TN, FN for each frame
|
108 |
+
raw_stats = compute_raw_stats_per_frame(reader, args.classes, args.n_workers)
|
109 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
110 |
Path(args.output_path).parent.mkdir(exist_ok=True, parents=True)
|
111 |
raw_stats.to_csv(args.output_path)
|