|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import Literal, Type |
|
|
|
import pandas as pd |
|
from typing import List |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
|
|
from viewer.literals import REFERENCE_RUNS, TASK_CONSISTENCY_BUTTON_CLOSE_LABEL, TASK_CONSISTENCY_BUTTON_LABEL |
|
|
|
|
|
@dataclass |
|
class PlotOptions: |
|
smoothing: int |
|
interpolate: bool |
|
pct: bool |
|
merge_seeds: str |
|
|
|
|
|
@dataclass(frozen=True) |
|
class TaskInfo: |
|
|
|
filename: str |
|
name: str |
|
metrics: dict[str, float] |
|
hashes: dict[str, str] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class RunInfo: |
|
name: str |
|
seed: int |
|
step: int |
|
tasks: list[TaskInfo] |
|
|
|
@property |
|
def full_name(self): |
|
return f"{self.name}-seed-{self.seed}" if not self.name.endswith("-") else self.name |
|
|
|
|
|
RunData = list[RunInfo] |
|
|
|
|
|
def get_run_name_seed(run_name): |
|
if "-seed-" not in run_name: |
|
return run_name, 42 |
|
run_name, seed = run_name.split("-seed-") |
|
return run_name, int(seed) |
|
|
|
|
|
def select_runs(df: pd.DataFrame, runs_to_include: list[str] | None = None, runs_to_exclude: list[str] | None = None): |
|
conditions = pd.Series(True, index=df.index) |
|
|
|
if runs_to_include: |
|
conditions_include = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_include] |
|
conditions = pd.concat(conditions_include, axis=1).any(axis=1) |
|
if runs_to_exclude: |
|
conditions_exclude = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_exclude] |
|
conditions = ~pd.concat(conditions_exclude, axis=1).any(axis=1) |
|
|
|
return df[conditions] |
|
|
|
BASELINE_GROUPING_MODE = Literal["Mean", "Median", "Min", "Max"] |
|
def get_groupped_score(df: pd.DataFrame, runs: list[str], groupping_mode: BASELINE_GROUPING_MODE): |
|
if len(runs) == 0: |
|
return pd.DataFrame(columns=df.columns) |
|
|
|
|
|
tasks_or_agg = [col for col in df.columns if is_task_column(col) or is_aggregate_column(col)] |
|
|
|
res = select_runs(df, runs_to_include=runs) |
|
|
|
if groupping_mode == "Mean": |
|
return res.groupby("steps")[tasks_or_agg].mean().reset_index() |
|
elif groupping_mode == "Median": |
|
return res.groupby("steps")[tasks_or_agg].median().reset_index() |
|
elif groupping_mode == "Min": |
|
return res.groupby("steps")[tasks_or_agg].min().reset_index() |
|
elif groupping_mode == "Max": |
|
return res.groupby("steps")[tasks_or_agg].max().reset_index() |
|
|
|
|
|
|
|
def check_task_hash_consistency(run_data: RunData, check_task_consistency_button): |
|
if not run_data or check_task_consistency_button == TASK_CONSISTENCY_BUTTON_CLOSE_LABEL: |
|
return gr.update(value={}, visible=False), gr.update(value=TASK_CONSISTENCY_BUTTON_LABEL) |
|
|
|
hash_keys = ["hash_examples", "hash_full_prompts"] |
|
task_hashes = defaultdict(lambda: defaultdict(list)) |
|
|
|
for run in run_data: |
|
for task_info in run.tasks: |
|
hashes = task_info.hashes |
|
hash_values = tuple(hashes.get(k) for k in hash_keys) |
|
task_hashes[task_info.name][hash_values].append({ |
|
"name": run.name, |
|
"step": run.step, |
|
"filename": task_info.filename |
|
}) |
|
|
|
conflicts = {} |
|
for task, hash_groups in task_hashes.items(): |
|
if len(hash_groups) > 1: |
|
conflicts[task] = [ |
|
{ |
|
"runs": runs, |
|
"hashes": dict(zip(hash_keys, hash_values)) |
|
} |
|
for hash_values, runs in hash_groups.items() |
|
] |
|
|
|
return gr.Json(value={"conflicts": conflicts}, visible=True), gr.Button(value=TASK_CONSISTENCY_BUTTON_CLOSE_LABEL) |
|
|
|
|
|
def create_df_from_run_data(run_data: RunData): |
|
df = pd.DataFrame([ |
|
{ |
|
"runname": run.name, |
|
"seed": run.seed, |
|
"steps": run.step, |
|
"agg_score_micro": 0, |
|
**{ |
|
f"{task_info.name}/{metric}": value |
|
for task_info in run.tasks |
|
for metric, value in task_info.metrics.items() |
|
} |
|
} for run in run_data |
|
]) |
|
df = df.fillna(0) |
|
return df |
|
|
|
|
|
def is_task_column(column: str): |
|
return "/" in column |
|
|
|
def is_aggregate_column(column: str): |
|
return column.startswith("agg_score") |
|
|
|
def is_baseline_run(run: str): |
|
return any(run.startswith(prefix) for prefix in ["random", "dummy", "baseline"]) |
|
|
|
def is_reference_run(run: str): |
|
return any([ref_run + "-" in run for ref_run in REFERENCE_RUNS]) |
|
|
|
|
|
def z_score_normalize(df: pd.DataFrame, normalization_runs: List[str], columns: List[str], variability_window: int = 1) -> pd.DataFrame: |
|
|
|
if len(normalization_runs) <= 1: |
|
return df |
|
|
|
normalization_df = select_runs(df, runs_to_include=normalization_runs) |
|
|
|
|
|
grouped = normalization_df.groupby('steps')[columns] |
|
means = grouped.mean() |
|
stds = grouped.std() |
|
|
|
|
|
stds = stds.replace(0, 1) |
|
|
|
|
|
last_means = means.loc[means.index.max()] |
|
|
|
last_window_stds = stds.sort_index(ascending=False).head(variability_window).mean() |
|
|
|
df[columns] = (df[columns].sub(last_means[columns], axis=1) |
|
.div(last_window_stds[columns], axis=1)) |
|
|
|
return df |
|
|
|
def rescale_scores(df: pd.DataFrame, normalization_runs: List[str], columns: List[str]) -> pd.DataFrame: |
|
baseline = get_groupped_score(df, normalization_runs, "Mean") |
|
|
|
|
|
baseline = baseline.set_index("steps").reindex(df["steps"].unique()).interpolate().reset_index() |
|
|
|
rescaled_cols = baseline.columns[~((baseline <= 0.0).all() | (baseline == 1.0).all())] |
|
rescaled_cols = rescaled_cols[(rescaled_cols != 'steps') & rescaled_cols.isin(columns)] |
|
|
|
df_with_baseline = df.merge(baseline[list(rescaled_cols) + ['steps']], on=["steps"], how="left", suffixes=("", "_baseline")).fillna(0) |
|
df[rescaled_cols] = df[rescaled_cols].sub(df_with_baseline[rescaled_cols + '_baseline'].values) |
|
df[rescaled_cols] = df[rescaled_cols].div(1 - df_with_baseline[rescaled_cols + '_baseline'].values) |
|
return df |