File size: 6,520 Bytes
27411b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from collections import defaultdict
from dataclasses import dataclass
from typing import Literal, Type

import pandas as pd
from typing import List

import gradio as gr
import numpy as np
import pandas as pd

from viewer.literals import REFERENCE_RUNS, TASK_CONSISTENCY_BUTTON_CLOSE_LABEL, TASK_CONSISTENCY_BUTTON_LABEL


@dataclass
class PlotOptions:
    smoothing: int
    interpolate: bool
    pct: bool
    merge_seeds: str


@dataclass(frozen=True)
class TaskInfo:
    # Source file from which the task was fetched
    filename: str
    name: str
    metrics: dict[str, float]
    hashes: dict[str, str]


@dataclass(frozen=True)
class RunInfo:
    name: str
    seed: int
    step: int
    tasks: list[TaskInfo]

    @property
    def full_name(self):
        return f"{self.name}-seed-{self.seed}" if not self.name.endswith("-") else self.name


RunData = list[RunInfo]


def get_run_name_seed(run_name):
    if "-seed-" not in run_name:
        return run_name, 42
    run_name, seed = run_name.split("-seed-")
    return run_name, int(seed)


def select_runs(df: pd.DataFrame, runs_to_include: list[str] | None = None, runs_to_exclude: list[str] | None = None):
    conditions = pd.Series(True, index=df.index)

    if runs_to_include:
        conditions_include = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_include]
        conditions = pd.concat(conditions_include, axis=1).any(axis=1)
    if runs_to_exclude:
        conditions_exclude = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_exclude]
        conditions = ~pd.concat(conditions_exclude, axis=1).any(axis=1)

    return df[conditions]

BASELINE_GROUPING_MODE = Literal["Mean", "Median", "Min", "Max"]
def get_groupped_score(df: pd.DataFrame, runs: list[str], groupping_mode: BASELINE_GROUPING_MODE):
    if len(runs) == 0:
        return pd.DataFrame(columns=df.columns)
    

    tasks_or_agg = [col for col in df.columns if is_task_column(col) or is_aggregate_column(col)]
    
    res = select_runs(df, runs_to_include=runs)
    
    if groupping_mode == "Mean":
        return res.groupby("steps")[tasks_or_agg].mean().reset_index()
    elif groupping_mode == "Median":
        return res.groupby("steps")[tasks_or_agg].median().reset_index()
    elif groupping_mode == "Min":
        return res.groupby("steps")[tasks_or_agg].min().reset_index()
    elif groupping_mode == "Max":
        return res.groupby("steps")[tasks_or_agg].max().reset_index()
    


def check_task_hash_consistency(run_data: RunData, check_task_consistency_button):
    if not run_data or check_task_consistency_button == TASK_CONSISTENCY_BUTTON_CLOSE_LABEL:
        return gr.update(value={}, visible=False), gr.update(value=TASK_CONSISTENCY_BUTTON_LABEL)
    # Ignore the continuation tokens, as they vary with generative tasks
    hash_keys = ["hash_examples", "hash_full_prompts"]
    task_hashes = defaultdict(lambda: defaultdict(list))

    for run in run_data:
        for task_info in run.tasks:
            hashes = task_info.hashes
            hash_values = tuple(hashes.get(k) for k in hash_keys)
            task_hashes[task_info.name][hash_values].append({
                "name": run.name,
                "step": run.step,
                "filename": task_info.filename
            })

    conflicts = {}
    for task, hash_groups in task_hashes.items():
        if len(hash_groups) > 1:
            conflicts[task] = [
                {
                    "runs": runs,
                    "hashes": dict(zip(hash_keys, hash_values))
                }
                for hash_values, runs in hash_groups.items()
            ]

    return gr.Json(value={"conflicts": conflicts}, visible=True), gr.Button(value=TASK_CONSISTENCY_BUTTON_CLOSE_LABEL)


def create_df_from_run_data(run_data: RunData):
    df = pd.DataFrame([
        {
            "runname": run.name,
            "seed": run.seed,
            "steps": run.step,
            "agg_score_micro": 0,
            **{
                f"{task_info.name}/{metric}": value
                for task_info in run.tasks
                for metric, value in task_info.metrics.items()
            }
        } for run in run_data
    ])
    df = df.fillna(0)
    return df


def is_task_column(column: str):
    return "/" in column

def is_aggregate_column(column: str):
    return column.startswith("agg_score")

def is_baseline_run(run: str):
    return any(run.startswith(prefix) for prefix in ["random", "dummy", "baseline"])

def is_reference_run(run: str):
    return any([ref_run + "-" in run for ref_run in REFERENCE_RUNS])


def z_score_normalize(df: pd.DataFrame, normalization_runs: List[str], columns: List[str], variability_window: int = 1) -> pd.DataFrame:
    # without 2 runs we can't estimate the std
    if len(normalization_runs) <= 1:
        return df
    
    normalization_df = select_runs(df, runs_to_include=normalization_runs)
    
    # Group by steps and calculate mean and std for all columns at once
    grouped = normalization_df.groupby('steps')[columns]
    means = grouped.mean()
    stds = grouped.std()

    # Ensure we don't divide by zero
    stds = stds.replace(0, 1)

    # fetch values at the highest step
    last_means = means.loc[means.index.max()]
    # fetch and average the last N steps defined by the window size
    last_window_stds = stds.sort_index(ascending=False).head(variability_window).mean()

    df[columns] = (df[columns].sub(last_means[columns], axis=1)
                   .div(last_window_stds[columns], axis=1))
    
    return df

def rescale_scores(df: pd.DataFrame, normalization_runs: List[str], columns: List[str]) -> pd.DataFrame:
    baseline = get_groupped_score(df, normalization_runs, "Mean")
    
    # Prepare baseline values and df for vectorized operation
    baseline = baseline.set_index("steps").reindex(df["steps"].unique()).interpolate().reset_index()
    
    rescaled_cols = baseline.columns[~((baseline <= 0.0).all() | (baseline == 1.0).all())]
    rescaled_cols = rescaled_cols[(rescaled_cols != 'steps') & rescaled_cols.isin(columns)]

    df_with_baseline = df.merge(baseline[list(rescaled_cols) + ['steps']], on=["steps"], how="left", suffixes=("", "_baseline")).fillna(0)
    df[rescaled_cols] = df[rescaled_cols].sub(df_with_baseline[rescaled_cols + '_baseline'].values)
    df[rescaled_cols] = df[rescaled_cols].div(1 - df_with_baseline[rescaled_cols + '_baseline'].values)
    return df