|
import re |
|
|
|
import itertools |
|
import json |
|
import os |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import get_args, Literal, List |
|
|
|
import pandas as pd |
|
import time |
|
from collections import defaultdict, Counter |
|
from datetime import datetime |
|
|
|
import gradio as gr |
|
from huggingface_hub import cached_assets_path |
|
|
|
from viewer.agg_score_metrics import agg_score_metrics_dict_prob, custom_task_aggregate_groups, agg_score_metrics |
|
from viewer.literals import BASLINE_RUN_NAME, CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL, \ |
|
CHECK_MISSING_DATAPOINTS_BUTTON_LABEL, \ |
|
FALLBACK_TOKEN_NAME, REFERENCE_RUNS |
|
from viewer.utils import BASELINE_GROUPING_MODE, create_df_from_run_data, get_run_name_seed, RunInfo, TaskInfo, get_groupped_score, RunData, is_aggregate_column, is_baseline_run, is_reference_run, is_task_column, rescale_scores, select_runs, z_score_normalize |
|
from datatrove.io import DataFolder |
|
from viewer.task_type_mapping import get_task_type, TASK_TYPE |
|
import tqdm as progress |
|
|
|
NormalizationMode = Literal["No adjustment", "Rescale", "Z-norm"] |
|
|
|
def fetch_run_results(results_uri, runs_to_fetch, steps_to_fetch, |
|
oauth_token: gr.OAuthToken | None = None): |
|
token = os.environ.get(FALLBACK_TOKEN_NAME) |
|
if oauth_token: |
|
token = oauth_token.token |
|
if not runs_to_fetch: |
|
return None, None |
|
|
|
steps_to_fetch_list = steps_to_fetch.split(",") |
|
data_folder = DataFolder(results_uri, token=token) |
|
|
|
def fetch_run_files(run_to_fetch): |
|
def filename_to_steps_timestamp(fn): |
|
step, ts = fn.split("/results_") |
|
dt = datetime.strptime(ts.split(".")[0], "%Y-%m-%dT%H-%M-%S") |
|
return int(step), dt |
|
|
|
run_path = f"results/{run_to_fetch}" |
|
|
|
try: |
|
eval_files = [f for f in data_folder.list_files(run_path, recursive=True)] |
|
except FileNotFoundError: |
|
return [] |
|
|
|
|
|
step_files = defaultdict(list) |
|
for fn in eval_files: |
|
steps, ts = filename_to_steps_timestamp(os.path.relpath(fn, run_path)) |
|
step_files[steps].append((ts, fn)) |
|
|
|
|
|
for step in step_files: |
|
step_files[step].sort(reverse=True) |
|
|
|
|
|
results = [] |
|
for step, files in step_files.items(): |
|
if any(step_element_match(step, step_el) for step_el in steps_to_fetch_list): |
|
results.append((run_to_fetch, step, files)) |
|
return results |
|
|
|
def get_file_with_retry(data_folder: DataFolder, filename: str): |
|
save_path = os.path.join(cached_assets_path(library_name="results-viewer", |
|
namespace=data_folder.path), filename) |
|
if os.path.exists(save_path): |
|
with open(save_path, "rb") as f: |
|
return f.read() |
|
|
|
wait = 1.5 |
|
max_retries = 20 |
|
for attempt in range(max_retries): |
|
try: |
|
with data_folder.open(filename, "rb") as f: |
|
data = f.read() |
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
with open(save_path, "wb") as f: |
|
f.write(data) |
|
return data |
|
except Exception as e: |
|
print(f"Error downloading (attempt {attempt + 1}/{max_retries}): {e}") |
|
if attempt == max_retries - 1: |
|
raise e |
|
time.sleep(max(wait ** attempt, 40)) |
|
|
|
return None |
|
|
|
def hot_fix_task_name(task_name: str): |
|
""" |
|
This is a hot fix as Hynek inocrrectly named the average collumns |
|
""" |
|
|
|
if task_name.endswith(":_average"): |
|
return task_name.replace(":_average", ":_average|0") |
|
return task_name |
|
|
|
|
|
|
|
|
|
def load_run_file(run_info: tuple[str, str, list[tuple[datetime, str]]]): |
|
run_to_fetch, step, file_data = run_info |
|
aggregated_data = {} |
|
latest_timestamps = {} |
|
|
|
for timestamp, result_file in file_data: |
|
file_data = get_file_with_retry(data_folder, result_file) |
|
if not file_data: |
|
raise Exception(f"File {result_file} not found") |
|
json_data = json.loads(file_data) |
|
for task, res in json_data["results"].items(): |
|
if task not in latest_timestamps or timestamp > latest_timestamps[task]: |
|
latest_timestamps[task] = timestamp |
|
|
|
hashes = json_data["summary_tasks"].get(task, {}).get("hashes") or { |
|
"hash_examples": "", |
|
"hash_full_prompts": "", |
|
"hash_input_tokens": "", |
|
"hash_cont_tokens": "" |
|
} |
|
aggregated_data[task] = { |
|
"metrics": res, |
|
"hashes": hashes, |
|
"filename": result_file |
|
} |
|
|
|
runname, seed = get_run_name_seed(run_to_fetch) |
|
return RunInfo(runname, seed, int(step), |
|
[TaskInfo(res["filename"], hot_fix_task_name(task), res["metrics"], res["hashes"]) for task, res in |
|
aggregated_data.items()]) |
|
|
|
with ThreadPoolExecutor() as pool: |
|
run_files = list(itertools.chain.from_iterable( |
|
progress.tqdm(pool.map(fetch_run_files, runs_to_fetch), total=len(runs_to_fetch), |
|
desc="Fetching datafiles..."))) |
|
run_data = list( |
|
progress.tqdm(pool.map(load_run_file, run_files), total=len(run_files), desc="Loading evals data...")) |
|
|
|
return run_data, None |
|
|
|
def filter_run_list_for_language(all_runs, language): |
|
if not language: |
|
return [] |
|
return [ |
|
x for x in all_runs if f"-{language}-" in x |
|
] |
|
|
|
|
|
def fetch_run_list(results_uri, oauth_token: gr.OAuthToken | None = None, language=None): |
|
token = os.environ.get(FALLBACK_TOKEN_NAME) |
|
if oauth_token: |
|
token = oauth_token.token |
|
|
|
data_folder = DataFolder(results_uri, token=token) |
|
|
|
list_of_runs = [f.removeprefix("results/") for f in |
|
data_folder.list_files(subdirectory="results", recursive=False, include_directories=True) |
|
if f != "results"] |
|
return list_of_runs, gr.update(choices=filter_run_list_for_language(list_of_runs, language), value=None) |
|
|
|
|
|
def select_runs_by_regex(runs, current_selected, regex_to_select, lang=None): |
|
if lang and "{lang}" in regex_to_select: |
|
regex_to_select = regex_to_select.replace("{lang}", lang) |
|
comp_re = re.compile(regex_to_select) |
|
return list(sorted(set((current_selected if current_selected else []) + |
|
[run for run in runs if comp_re.fullmatch(run)]))) |
|
|
|
|
|
def add_baseline_rows(df: pd.DataFrame, baseline_runs: list[str], grouping_mode: BASELINE_GROUPING_MODE, baseline_name: str = BASLINE_RUN_NAME) -> pd.DataFrame: |
|
if len(baseline_runs) == 0: |
|
return df |
|
|
|
baseline_df = select_runs(df, runs_to_include=baseline_runs) |
|
baseline_values = get_groupped_score(baseline_df, baseline_runs, grouping_mode) |
|
|
|
|
|
unique_steps = df["steps"].unique() |
|
baseline_values = baseline_values.set_index("steps").reindex(index=unique_steps).interpolate().reset_index() |
|
runname, seed = get_run_name_seed(baseline_name) |
|
|
|
baseline_values['runname'] = runname |
|
baseline_values['seed'] = seed |
|
|
|
|
|
df = pd.concat([df, baseline_values], ignore_index=True) |
|
|
|
return df |
|
|
|
def normalize_scores(df: pd.DataFrame, normalization_runs: list[str], clip_scores: bool, normalization_mode: NormalizationMode, variability_window: int = 1): |
|
if not normalization_runs or len(normalization_runs) == 0: |
|
return df |
|
|
|
cols_to_process = [col for col in df.columns if is_task_column(col) and not col.endswith('_stderr') and ":_average|" not in col] |
|
|
|
if normalization_mode == "Z-norm": |
|
df = z_score_normalize(df, normalization_runs, cols_to_process, variability_window) |
|
elif normalization_mode == "Rescale": |
|
df = rescale_scores(df, normalization_runs, cols_to_process) |
|
|
|
if clip_scores: |
|
df[cols_to_process] = df[cols_to_process].clip(lower=0) |
|
return df |
|
|
|
def recompute_averages(df: pd.DataFrame) -> pd.DataFrame: |
|
average_columns = [col for col in df.columns if ":_average|" in col] |
|
tasks_with_averages = set(x.split(":_average|")[0] for x in average_columns) |
|
values_to_average = defaultdict(list) |
|
for col in df.columns: |
|
if (task := col.split(":")[0]) in tasks_with_averages and (task_subset := col.split(":")[1].split("|")[0]) and task_subset != "_average": |
|
task_group = custom_task_aggregate_groups.get(task) |
|
|
|
if not task_group or task_subset in task_group: |
|
values_to_average[(task, col.split("|")[-1])].append(col) |
|
|
|
for (task, metric), cols in values_to_average.items(): |
|
df[f"{task}:_average|{metric}"] = df[cols].mean(axis=1) |
|
|
|
return df |
|
|
|
|
|
def select_runs_by_language(runs, current_selected, language, selected_cols, mcq_type): |
|
new_runs = current_selected |
|
if language: |
|
if language in agg_score_metrics[mcq_type]: |
|
selected_cols = agg_score_metrics[mcq_type][language] |
|
new_runs = select_runs_by_regex(runs, current_selected, ".*gemma.*-(" + "|".join(REFERENCE_RUNS) + ")-{lang}-.*", language) |
|
return gr.update(value=new_runs, choices=filter_run_list_for_language(runs, language)), gr.update(value=selected_cols if selected_cols else [], choices=selected_cols if selected_cols else []) |
|
|
|
|
|
def step_element_match(step_to_check, step_element): |
|
step_element = step_element.strip().replace(" ", "") |
|
if "-" in step_element: |
|
a, b = step_element.split("-") |
|
c = None |
|
if "%" in b: |
|
b, c = b.split("%") |
|
return (int(a) <= step_to_check <= int(b) and |
|
(c is None or (step_to_check - int(a)) % int(c) == 0)) |
|
elif "%" in step_element: |
|
return step_to_check % int(step_element[1:]) == 0 |
|
else: |
|
return step_to_check == int(step_element) |
|
|
|
|
|
def init_input_component_values(run_data: RunData, normalization_mode: NormalizationMode, language: str | None = None): |
|
task_metrics = set(metric for run in run_data for task in run.tasks for metric in task.metrics.keys()) |
|
initial_value = "agg_score_metrics" if language and language in agg_score_metrics_dict_prob else \ |
|
("acc_norm" if "acc_norm" in task_metrics else next(iter(task_metrics), None)) |
|
runs = set(run.full_name for run in run_data) |
|
baseline_runs = [run for run in runs if is_baseline_run(run)] |
|
|
|
|
|
|
|
|
|
return (gr.update(choices=["agg_score_metrics"] + sorted(task_metrics, key=lambda m: (m.endswith("_stderr"), m)), value=[initial_value]), |
|
init_input_normalization_runs(run_data, normalization_mode), |
|
gr.update(value=[] if not baseline_runs else [baseline_runs[0]], choices=sorted(runs))) |
|
|
|
|
|
def init_input_normalization_runs(runs: RunData, normalization_mode: NormalizationMode): |
|
run_names = set([run.full_name for run in runs]) |
|
if normalization_mode == "Z-norm": |
|
referene_runs = [run for run in run_names if is_reference_run(run)] |
|
return gr.update(value=referene_runs, choices=sorted(run_names)) |
|
|
|
elif normalization_mode == "Rescale": |
|
baseline_runs = [run for run in run_names if is_baseline_run(run)] |
|
return gr.update(value=baseline_runs, choices=sorted(run_names)) |
|
|
|
else: |
|
return gr.update(value=[], choices=[]) |
|
|
|
|
|
|
|
def init_std_dev_runs(runs, current_val): |
|
|
|
value = current_val or "-" |
|
seed_counter = Counter() |
|
for run in runs or []: |
|
seed_counter[run.split("-seed-")[0]] += 1 |
|
|
|
if seed_counter[value] <= 1: |
|
top_val, top_count = seed_counter.most_common(n=1)[0] if seed_counter else (None, 0) |
|
value = top_val if top_count > 1 else "-" |
|
return gr.update(value=value, choices=["-"] + sorted([val for val, count in seed_counter.items() if count > 1])) |
|
|
|
|
|
def update_dropdown_choices(selected_choices, possible_choices): |
|
selected_choices = [choice for choice in selected_choices if choice in possible_choices] |
|
return gr.update(choices=possible_choices, value=selected_choices) |
|
|
|
|
|
def render_results_table(df: pd.DataFrame, metrics, task_avg, normalization_runs: list[str], baseline_runs: list[str], baseline_mode: BASELINE_GROUPING_MODE, clip_scores: bool, |
|
normalization_mode: NormalizationMode, aggregate_score_cols: list[str], language: str, variability_window: int = 1, mcq_type = "prob"): |
|
|
|
|
|
|
|
|
|
|
|
df = add_baseline_rows(df, baseline_runs, baseline_mode) |
|
|
|
|
|
df = normalize_scores(df, normalization_runs=normalization_runs, clip_scores=clip_scores, normalization_mode=normalization_mode, variability_window=variability_window) |
|
|
|
df = recompute_averages(df) |
|
|
|
|
|
df = select_runs(df, runs_to_exclude=baseline_runs) |
|
|
|
to_drop = [] |
|
for col in df.columns: |
|
if is_task_column(col): |
|
|
|
if "agg_score_metrics" in metrics and language in agg_score_metrics[mcq_type] and col in agg_score_metrics[mcq_type][language]: |
|
continue |
|
task, metric = col.split("/") |
|
|
|
if ((metric not in metrics and len(metrics) > 0) or |
|
(":_average|" in task and "show averages" not in task_avg) or |
|
("|" in task and ":_average|" not in task and ":" in task.split("|")[ |
|
1] and "show expanded" not in task_avg)): |
|
to_drop.append(col) |
|
if to_drop: |
|
df = df.drop(columns=to_drop) |
|
|
|
|
|
df.sort_values(by=["runname", "seed", "steps"], inplace=True) |
|
df = update_agg_score(df, aggregate_score_cols) |
|
|
|
aggregate_columns = [col for col in df.columns if is_aggregate_column(col)] |
|
|
|
task_columns = [col for col in df.columns if is_task_column(col)] |
|
return df, update_dropdown_choices(aggregate_score_cols, task_columns), gr.update(aggregate_columns[0], choices=aggregate_columns + task_columns) |
|
|
|
|
|
def get_type_tasks_dict(tasks: list[str]) -> dict[TASK_TYPE, list[str]]: |
|
""" |
|
Creates a dictionary mapping task types to lists of task names. |
|
|
|
Args: |
|
tasks (list[str]): List of task names. |
|
|
|
Returns: |
|
dict[TASK_TYPE, list[str]]: Dictionary with task types as keys and lists of task names as values. |
|
""" |
|
task_type_dict: dict[TASK_TYPE, list[str]] = defaultdict(list) |
|
|
|
for task in tasks: |
|
task_type = get_task_type(task) |
|
if not task_type: |
|
raise ValueError(f"Task {task} has no task type") |
|
task_type_dict[task_type].append(task) |
|
|
|
return task_type_dict |
|
|
|
def update_agg_score(df: pd.DataFrame, agg_score_columns: list[str]) -> pd.DataFrame: |
|
if not agg_score_columns or df is None or "steps" not in df: |
|
return df |
|
|
|
new_df = df.copy() |
|
cols_to_avg = [col for col in agg_score_columns if col in new_df.columns] |
|
|
|
if cols_to_avg: |
|
|
|
task_type_dict = get_type_tasks_dict(cols_to_avg) |
|
|
|
for task_type, tasks in task_type_dict.items(): |
|
new_df[f'agg_score_{task_type}'] = new_df[tasks].mean(axis=1) |
|
|
|
|
|
|
|
new_df['agg_score_macro'] = new_df[[f'agg_score_{task_type}' for task_type in task_type_dict.keys()]].mean(axis=1) |
|
|
|
|
|
new_df['agg_score_micro'] = new_df[cols_to_avg].mean(axis=1) |
|
|
|
return new_df |
|
|
|
|
|
def export_results_csv(df): |
|
df.to_csv("output.csv", index=False) |
|
return gr.update(value="output.csv", visible=True) |
|
|
|
|
|
def check_missing_datapoints(runs, steps_to_check, run_data: RunData, check_missing_checkpoints): |
|
if not runs or check_missing_checkpoints == CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL or not run_data or not steps_to_check: |
|
return gr.Json(value={}, visible=False), gr.Button(value=CHECK_MISSING_DATAPOINTS_BUTTON_LABEL) |
|
|
|
max_step = max(run.step for run in run_data) |
|
steps_set = set() |
|
for step_elem in steps_to_check.split(","): |
|
step_element = step_elem.strip().replace(" ", "") |
|
if "-" in step_element: |
|
a, b = step_element.split("-") |
|
c = None |
|
if "%" in b: |
|
b, c = b.split("%") |
|
steps_set.update(range(int(a), int(b) + 1, int(c) if c else 1)) |
|
elif "%" in step_element: |
|
steps_set.update(range(0, max_step + 1, int(step_element[1:]))) |
|
else: |
|
steps_set.add(int(step_element)) |
|
|
|
existing_evals = {(run.name, run.seed, run.step) for run in run_data} |
|
|
|
missing_evals = defaultdict(dict) |
|
for run in runs: |
|
runname, seed = get_run_name_seed(run) |
|
missing_steps = [ |
|
step for step in sorted(steps_set) if (runname, seed, step) not in existing_evals |
|
] |
|
if missing_steps: |
|
missing_evals[runname][str(seed)] = missing_steps |
|
|
|
return gr.Json(value=missing_evals, visible=True), gr.Button(value=CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL) |
|
|