File size: 18,146 Bytes
27411b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import re
import itertools
import json
import os
from concurrent.futures import ThreadPoolExecutor
from typing import get_args, Literal, List
import pandas as pd
import time
from collections import defaultdict, Counter
from datetime import datetime
import gradio as gr
from huggingface_hub import cached_assets_path
from viewer.agg_score_metrics import agg_score_metrics_dict_prob, custom_task_aggregate_groups, agg_score_metrics
from viewer.literals import BASLINE_RUN_NAME, CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL, \
CHECK_MISSING_DATAPOINTS_BUTTON_LABEL, \
FALLBACK_TOKEN_NAME, REFERENCE_RUNS
from viewer.utils import BASELINE_GROUPING_MODE, create_df_from_run_data, get_run_name_seed, RunInfo, TaskInfo, get_groupped_score, RunData, is_aggregate_column, is_baseline_run, is_reference_run, is_task_column, rescale_scores, select_runs, z_score_normalize
from datatrove.io import DataFolder
from viewer.task_type_mapping import get_task_type, TASK_TYPE
import tqdm as progress
NormalizationMode = Literal["No adjustment", "Rescale", "Z-norm"]
def fetch_run_results(results_uri, runs_to_fetch, steps_to_fetch,
oauth_token: gr.OAuthToken | None = None):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if oauth_token:
token = oauth_token.token
if not runs_to_fetch:
return None, None
steps_to_fetch_list = steps_to_fetch.split(",")
data_folder = DataFolder(results_uri, token=token)
def fetch_run_files(run_to_fetch):
def filename_to_steps_timestamp(fn):
step, ts = fn.split("/results_")
dt = datetime.strptime(ts.split(".")[0], "%Y-%m-%dT%H-%M-%S")
return int(step), dt
run_path = f"results/{run_to_fetch}"
try:
eval_files = [f for f in data_folder.list_files(run_path, recursive=True)]
except FileNotFoundError:
return []
# Group files by step
step_files = defaultdict(list)
for fn in eval_files:
steps, ts = filename_to_steps_timestamp(os.path.relpath(fn, run_path))
step_files[steps].append((ts, fn))
# Sort files within each step by timestamp (newest first)
for step in step_files:
step_files[step].sort(reverse=True) # tuples are sorted element by element by default
# (run, steps, file_paths_in_repo)
results = []
for step, files in step_files.items():
if any(step_element_match(step, step_el) for step_el in steps_to_fetch_list):
results.append((run_to_fetch, step, files))
return results
def get_file_with_retry(data_folder: DataFolder, filename: str):
save_path = os.path.join(cached_assets_path(library_name="results-viewer",
namespace=data_folder.path), filename)
if os.path.exists(save_path):
with open(save_path, "rb") as f:
return f.read()
wait = 1.5
max_retries = 20
for attempt in range(max_retries):
try:
with data_folder.open(filename, "rb") as f:
data = f.read()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, "wb") as f:
f.write(data)
return data
except Exception as e:
print(f"Error downloading (attempt {attempt + 1}/{max_retries}): {e}")
if attempt == max_retries - 1:
raise e
time.sleep(max(wait ** attempt, 40))
return None
def hot_fix_task_name(task_name: str):
"""
This is a hot fix as Hynek inocrrectly named the average collumns
"""
if task_name.endswith(":_average"):
return task_name.replace(":_average", ":_average|0")
return task_name
def load_run_file(run_info: tuple[str, str, list[tuple[datetime, str]]]):
run_to_fetch, step, file_data = run_info
aggregated_data = {}
latest_timestamps = {}
for timestamp, result_file in file_data:
file_data = get_file_with_retry(data_folder, result_file)
if not file_data:
raise Exception(f"File {result_file} not found")
json_data = json.loads(file_data)
for task, res in json_data["results"].items():
if task not in latest_timestamps or timestamp > latest_timestamps[task]:
latest_timestamps[task] = timestamp
# The aggregated tassks don't contain hashes, we thus use dummy values not to cause conflict
hashes = json_data["summary_tasks"].get(task, {}).get("hashes") or {
"hash_examples": "",
"hash_full_prompts": "",
"hash_input_tokens": "",
"hash_cont_tokens": ""
}
aggregated_data[task] = {
"metrics": res,
"hashes": hashes,
"filename": result_file
}
runname, seed = get_run_name_seed(run_to_fetch)
return RunInfo(runname, seed, int(step),
[TaskInfo(res["filename"], hot_fix_task_name(task), res["metrics"], res["hashes"]) for task, res in
aggregated_data.items()])
with ThreadPoolExecutor() as pool:
run_files = list(itertools.chain.from_iterable(
progress.tqdm(pool.map(fetch_run_files, runs_to_fetch), total=len(runs_to_fetch),
desc="Fetching datafiles...")))
run_data = list(
progress.tqdm(pool.map(load_run_file, run_files), total=len(run_files), desc="Loading evals data..."))
return run_data, None
def filter_run_list_for_language(all_runs, language):
if not language:
return []
return [
x for x in all_runs if f"-{language}-" in x
]
def fetch_run_list(results_uri, oauth_token: gr.OAuthToken | None = None, language=None):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if oauth_token:
token = oauth_token.token
data_folder = DataFolder(results_uri, token=token)
# Ignore the root directory
list_of_runs = [f.removeprefix("results/") for f in
data_folder.list_files(subdirectory="results", recursive=False, include_directories=True)
if f != "results"]
return list_of_runs, gr.update(choices=filter_run_list_for_language(list_of_runs, language), value=None)
def select_runs_by_regex(runs, current_selected, regex_to_select, lang=None):
if lang and "{lang}" in regex_to_select:
regex_to_select = regex_to_select.replace("{lang}", lang)
comp_re = re.compile(regex_to_select)
return list(sorted(set((current_selected if current_selected else []) +
[run for run in runs if comp_re.fullmatch(run)])))
def add_baseline_rows(df: pd.DataFrame, baseline_runs: list[str], grouping_mode: BASELINE_GROUPING_MODE, baseline_name: str = BASLINE_RUN_NAME) -> pd.DataFrame:
if len(baseline_runs) == 0:
return df
baseline_df = select_runs(df, runs_to_include=baseline_runs)
baseline_values = get_groupped_score(baseline_df, baseline_runs, grouping_mode)
# If baseline values doesn't contain all available steps, we interpolate the baseline values
unique_steps = df["steps"].unique()
baseline_values = baseline_values.set_index("steps").reindex(index=unique_steps).interpolate().reset_index()
runname, seed = get_run_name_seed(baseline_name)
baseline_values['runname'] = runname
baseline_values['seed'] = seed
# Add the baseline values to the dataframe
df = pd.concat([df, baseline_values], ignore_index=True)
return df
def normalize_scores(df: pd.DataFrame, normalization_runs: list[str], clip_scores: bool, normalization_mode: NormalizationMode, variability_window: int = 1):
if not normalization_runs or len(normalization_runs) == 0:
return df
cols_to_process = [col for col in df.columns if is_task_column(col) and not col.endswith('_stderr') and ":_average|" not in col]
if normalization_mode == "Z-norm":
df = z_score_normalize(df, normalization_runs, cols_to_process, variability_window)
elif normalization_mode == "Rescale":
df = rescale_scores(df, normalization_runs, cols_to_process)
if clip_scores:
df[cols_to_process] = df[cols_to_process].clip(lower=0)
return df
def recompute_averages(df: pd.DataFrame) -> pd.DataFrame:
average_columns = [col for col in df.columns if ":_average|" in col]
tasks_with_averages = set(x.split(":_average|")[0] for x in average_columns)
values_to_average = defaultdict(list)
for col in df.columns:
if (task := col.split(":")[0]) in tasks_with_averages and (task_subset := col.split(":")[1].split("|")[0]) and task_subset != "_average":
task_group = custom_task_aggregate_groups.get(task)
# Only add the task to average is it exists in the task group
if not task_group or task_subset in task_group:
values_to_average[(task, col.split("|")[-1])].append(col) # task name and metric
for (task, metric), cols in values_to_average.items():
df[f"{task}:_average|{metric}"] = df[cols].mean(axis=1)
return df
def select_runs_by_language(runs, current_selected, language, selected_cols, mcq_type):
new_runs = current_selected
if language:
if language in agg_score_metrics[mcq_type]:
selected_cols = agg_score_metrics[mcq_type][language]
new_runs = select_runs_by_regex(runs, current_selected, ".*gemma.*-(" + "|".join(REFERENCE_RUNS) + ")-{lang}-.*", language)
return gr.update(value=new_runs, choices=filter_run_list_for_language(runs, language)), gr.update(value=selected_cols if selected_cols else [], choices=selected_cols if selected_cols else [])
def step_element_match(step_to_check, step_element):
step_element = step_element.strip().replace(" ", "")
if "-" in step_element:
a, b = step_element.split("-")
c = None
if "%" in b:
b, c = b.split("%")
return (int(a) <= step_to_check <= int(b) and
(c is None or (step_to_check - int(a)) % int(c) == 0))
elif "%" in step_element:
return step_to_check % int(step_element[1:]) == 0
else:
return step_to_check == int(step_element)
def init_input_component_values(run_data: RunData, normalization_mode: NormalizationMode, language: str | None = None):
task_metrics = set(metric for run in run_data for task in run.tasks for metric in task.metrics.keys())
initial_value = "agg_score_metrics" if language and language in agg_score_metrics_dict_prob else \
("acc_norm" if "acc_norm" in task_metrics else next(iter(task_metrics), None))
runs = set(run.full_name for run in run_data)
baseline_runs = [run for run in runs if is_baseline_run(run)]
return (gr.update(choices=["agg_score_metrics"] + sorted(task_metrics, key=lambda m: (m.endswith("_stderr"), m)), value=[initial_value]),
init_input_normalization_runs(run_data, normalization_mode),
gr.update(value=[] if not baseline_runs else [baseline_runs[0]], choices=sorted(runs)))
def init_input_normalization_runs(runs: RunData, normalization_mode: NormalizationMode):
run_names = set([run.full_name for run in runs])
if normalization_mode == "Z-norm":
referene_runs = [run for run in run_names if is_reference_run(run)]
return gr.update(value=referene_runs, choices=sorted(run_names))
elif normalization_mode == "Rescale":
baseline_runs = [run for run in run_names if is_baseline_run(run)]
return gr.update(value=baseline_runs, choices=sorted(run_names))
else:
return gr.update(value=[], choices=[])
def init_std_dev_runs(runs, current_val):
# sets to the run with the highest count of seeds, that has at least 2 seeds. name does not include the seed
value = current_val or "-"
seed_counter = Counter()
for run in runs or []:
seed_counter[run.split("-seed-")[0]] += 1
if seed_counter[value] <= 1: # can only select runs with at least 2 seeds
top_val, top_count = seed_counter.most_common(n=1)[0] if seed_counter else (None, 0)
value = top_val if top_count > 1 else "-"
return gr.update(value=value, choices=["-"] + sorted([val for val, count in seed_counter.items() if count > 1]))
def update_dropdown_choices(selected_choices, possible_choices):
selected_choices = [choice for choice in selected_choices if choice in possible_choices]
return gr.update(choices=possible_choices, value=selected_choices)
def render_results_table(df: pd.DataFrame, metrics, task_avg, normalization_runs: list[str], baseline_runs: list[str], baseline_mode: BASELINE_GROUPING_MODE, clip_scores: bool,
normalization_mode: NormalizationMode, aggregate_score_cols: list[str], language: str, variability_window: int = 1, mcq_type = "prob"):
# if not run_data:
# return None, gr.update(), gr.update()
# df = create_df_from_run_data(run_data)
# Create baseline rows
df = add_baseline_rows(df, baseline_runs, baseline_mode)
# it's important to first normalize scores, so that the _averages can be recomputed
df = normalize_scores(df, normalization_runs=normalization_runs, clip_scores=clip_scores, normalization_mode=normalization_mode, variability_window=variability_window)
df = recompute_averages(df)
# Remove baseline runs from the main DataFrame
df = select_runs(df, runs_to_exclude=baseline_runs)
to_drop = []
for col in df.columns:
if is_task_column(col):
# part of the agg score metrics
if "agg_score_metrics" in metrics and language in agg_score_metrics[mcq_type] and col in agg_score_metrics[mcq_type][language]:
continue
task, metric = col.split("/")
# If no metrics are selected, show all metrics
if ((metric not in metrics and len(metrics) > 0) or
(":_average|" in task and "show averages" not in task_avg) or
("|" in task and ":_average|" not in task and ":" in task.split("|")[
1] and "show expanded" not in task_avg)):
to_drop.append(col)
if to_drop:
df = df.drop(columns=to_drop)
df.sort_values(by=["runname", "seed", "steps"], inplace=True)
df = update_agg_score(df, aggregate_score_cols)
aggregate_columns = [col for col in df.columns if is_aggregate_column(col)]
# All task metrics contains /metric
task_columns = [col for col in df.columns if is_task_column(col)]
return df, update_dropdown_choices(aggregate_score_cols, task_columns), gr.update(aggregate_columns[0], choices=aggregate_columns + task_columns)
def get_type_tasks_dict(tasks: list[str]) -> dict[TASK_TYPE, list[str]]:
"""
Creates a dictionary mapping task types to lists of task names.
Args:
tasks (list[str]): List of task names.
Returns:
dict[TASK_TYPE, list[str]]: Dictionary with task types as keys and lists of task names as values.
"""
task_type_dict: dict[TASK_TYPE, list[str]] = defaultdict(list)
for task in tasks:
task_type = get_task_type(task)
if not task_type:
raise ValueError(f"Task {task} has no task type")
task_type_dict[task_type].append(task)
return task_type_dict
def update_agg_score(df: pd.DataFrame, agg_score_columns: list[str]) -> pd.DataFrame:
if not agg_score_columns or df is None or "steps" not in df:
return df
new_df = df.copy()
cols_to_avg = [col for col in agg_score_columns if col in new_df.columns]
if cols_to_avg:
# Calculate task type aggregates
task_type_dict = get_type_tasks_dict(cols_to_avg)
# Create a dict from task_type_list
for task_type, tasks in task_type_dict.items():
new_df[f'agg_score_{task_type}'] = new_df[tasks].mean(axis=1)
# Calculate agg_score_task_macro
new_df['agg_score_macro'] = new_df[[f'agg_score_{task_type}' for task_type in task_type_dict.keys()]].mean(axis=1)
# Update agg_score
new_df['agg_score_micro'] = new_df[cols_to_avg].mean(axis=1)
return new_df
def export_results_csv(df):
df.to_csv("output.csv", index=False)
return gr.update(value="output.csv", visible=True)
def check_missing_datapoints(runs, steps_to_check, run_data: RunData, check_missing_checkpoints):
if not runs or check_missing_checkpoints == CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL or not run_data or not steps_to_check:
return gr.Json(value={}, visible=False), gr.Button(value=CHECK_MISSING_DATAPOINTS_BUTTON_LABEL)
max_step = max(run.step for run in run_data)
steps_set = set()
for step_elem in steps_to_check.split(","):
step_element = step_elem.strip().replace(" ", "")
if "-" in step_element:
a, b = step_element.split("-")
c = None
if "%" in b:
b, c = b.split("%")
steps_set.update(range(int(a), int(b) + 1, int(c) if c else 1))
elif "%" in step_element:
steps_set.update(range(0, max_step + 1, int(step_element[1:])))
else:
steps_set.add(int(step_element))
existing_evals = {(run.name, run.seed, run.step) for run in run_data}
missing_evals = defaultdict(dict)
for run in runs:
runname, seed = get_run_name_seed(run)
missing_steps = [
step for step in sorted(steps_set) if (runname, seed, step) not in existing_evals
]
if missing_steps:
missing_evals[runname][str(seed)] = missing_steps
return gr.Json(value=missing_evals, visible=True), gr.Button(value=CHECK_MISSING_DATAPOINTS_BUTTON_CLOSE_LABEL)
|