|
from collections import defaultdict |
|
from typing import get_args |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
from literals import TASK_CONSISTENCY_BUTTON_LABEL, CHECK_MISSING_DATAPOINTS_BUTTON_LABEL |
|
from plot import prepare_plot_data, plot_metric |
|
from viewer.results import fetch_run_results, fetch_run_list, init_input_normalization_runs, select_runs_by_regex, \ |
|
select_runs_by_language, \ |
|
init_input_component_values, init_std_dev_runs, render_results_table, export_results_csv, \ |
|
check_missing_datapoints |
|
from viewer.stats import generate_and_export_stats, format_statistics, calculate_statistics, smooth_tasks |
|
from viewer.utils import PlotOptions, check_task_hash_consistency, BASELINE_GROUPING_MODE |
|
|
|
with gr.Blocks() as demo: |
|
list_of_runs = gr.State([]) |
|
plot_data = gr.State([]) |
|
statistics = gr.State(defaultdict(lambda: np.nan)) |
|
login_button = gr.LoginButton(visible=False) |
|
run_data = gr.State([]) |
|
gr.Markdown("# FineWeb Multilingual experiments results explorer V2") |
|
results_uri = gr.Textbox(label="TB HF Repo", value="s3://fineweb-multilingual-v1/evals/results/", visible=True) |
|
with gr.Column(): |
|
with gr.Row(): |
|
|
|
steps = gr.Textbox(label="Training steps", value="%500", |
|
info="Use \",\" to separate. Use \"%32000\" for every 32000 steps. Use \"-\" for ranges. You can also combine them: \"1000-5000%1000\", 1000 to 5000 every 1000 steps.", |
|
interactive=True) |
|
with gr.Column(): |
|
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], |
|
interactive=True, label="Select language", |
|
info="Choose a language preset") |
|
mcq_type = gr.Radio(choices=["prob_raw", "prob", "acc"], value="prob", label="MCQ agg metric type") |
|
with gr.Column(): |
|
select_by_regex_text = gr.Textbox(label="Regex to select runs", |
|
value="1p46G-gemma-fp-.*-{lang}-.*") |
|
select_by_regex_button = gr.Button("Select matching runs") |
|
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs") |
|
fetch_res = gr.Button("Fetch results") |
|
with gr.Column(): |
|
aggregate_score_cols = gr.Dropdown( |
|
choices=[], interactive=True, multiselect=True, |
|
value=[], |
|
label="Aggregate score columns", allow_custom_value=True, |
|
info="The values from these columns/metrics will be averaged to produce the \"agg_score\"" |
|
) |
|
metrics_to_show = gr.Checkboxgroup( |
|
interactive=True, |
|
value=["agg_score_metrics"], |
|
choices=["agg_score_metrics"], |
|
label="Metrics to display", |
|
info="Results for these metrics will be shown") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
task_averaging = gr.Checkboxgroup( |
|
interactive=True, |
|
choices=["show averages", "show expanded"], |
|
value=["show averages"], |
|
label="Task averaging", |
|
info="Behaviour for tasks with subsets") |
|
|
|
std_dev_run = gr.Dropdown( |
|
interactive=True, |
|
choices=[], |
|
label="Run for std_dev", |
|
info="Select a run to compute std_devs. Must have multiple seeds." |
|
) |
|
with gr.Column(scale=2): |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
normalization_runs = gr.Dropdown( |
|
interactive=True, |
|
value=[], choices=[], |
|
multiselect=True, |
|
label="Normalization runs", |
|
info="Select runs to use for normalization" |
|
) |
|
normalization_mode = gr.Radio( |
|
choices=["No norm", "Rescale", "Z-norm"], |
|
value="Z-norm", |
|
label="Normalization mode" |
|
) |
|
clip_scores_checkbox = gr.Checkbox(value=False, label="Clip Scores") |
|
with gr.Column(scale=1): |
|
baseline_runs = gr.Dropdown( |
|
interactive=True, |
|
value=[], choices=[], |
|
multiselect=True, |
|
label="Baseline runs", |
|
info="Select runs to use as baseline" |
|
) |
|
baseline_groupping_mode = gr.Dropdown(choices=list(get_args(BASELINE_GROUPING_MODE)), value="Mean", label="Baseline grouping mode") |
|
results_df = gr.Dataframe(interactive=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
export_button = gr.Button("Export Results") |
|
csv = gr.File(interactive=False, visible=False) |
|
with gr.Column(): |
|
export_stats_button = gr.Button("Export Stats") |
|
stats_csv = gr.File(interactive=False, visible=False) |
|
|
|
check_missing_checkpoints = gr.Button(CHECK_MISSING_DATAPOINTS_BUTTON_LABEL) |
|
check_task_consistency_button = gr.Button(TASK_CONSISTENCY_BUTTON_LABEL, visible=True) |
|
|
|
task_consistency_output = gr.Json(label="Task hash consistency", visible=False) |
|
missing_list = gr.Json(label="Missing datapoints", visible=False) |
|
with gr.Row(): |
|
column_to_plot = gr.Dropdown( |
|
choices=[], interactive=True, |
|
value='agg_score_macro', |
|
label="Task and metric", allow_custom_value=True) |
|
score_step = gr.Number( |
|
value=14000, |
|
label="Step to use for computing benchmark score", |
|
) |
|
baseline_window = gr.Number( |
|
value=5, |
|
label="Window size for computing variability and randomness", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("### Monotonicity - Spearman Rank Correlation (steps vs score)") |
|
monotonicity_md = gr.Markdown() |
|
with gr.Column(): |
|
gr.Markdown("### Variability (Windowed) - std_dev (all steps of std_dev_run) and SNR (last step)") |
|
variability_md = gr.Markdown() |
|
with gr.Column(): |
|
gr.Markdown("### Randomness (Windowed) - distance to RB (in std_dev)") |
|
randomness_md = gr.Markdown() |
|
with gr.Column(): |
|
gr.Markdown("### Ordering - Kendall Tau (steps vs score)") |
|
ordering_md = gr.Markdown() |
|
with gr.Row(): |
|
merge_seeds = gr.Dropdown( |
|
choices=["none", "min", "max", "mean"], |
|
value='mean', |
|
label="Seed merging") |
|
smoothing_steps = gr.Number( |
|
value=3, |
|
label="Smooth every N datapoints (sliding window)", |
|
) |
|
stds_to_plot = gr.Number( |
|
value=0, |
|
label="plot N stds as error bars", |
|
) |
|
with gr.Column(): |
|
interpolate_checkbox = gr.Checkbox(value=False, label="Interpolate missing steps") |
|
percent_checkbox = gr.Checkbox(value=False, label="%") |
|
barplot_checkbox = gr.Checkbox(value=False, label="Bar plot") |
|
plot = gr.Plot() |
|
|
|
|
|
gr.on( |
|
triggers=[results_uri.change], |
|
fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs] |
|
) |
|
gr.on( |
|
triggers=[select_by_regex_button.click], |
|
fn=select_runs_by_regex, |
|
inputs=[list_of_runs, selected_runs, select_by_regex_text, select_by_language], outputs=[selected_runs] |
|
) |
|
gr.on( |
|
triggers=[select_by_language.change, mcq_type.change], |
|
fn=select_runs_by_language, |
|
inputs=[list_of_runs, selected_runs, select_by_language, aggregate_score_cols, mcq_type], outputs=[selected_runs, aggregate_score_cols] |
|
) |
|
demo.load(fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs]) |
|
|
|
gr.on( |
|
triggers=[selected_runs.change], |
|
fn=init_std_dev_runs, |
|
inputs=[selected_runs, std_dev_run], |
|
outputs=[std_dev_run] |
|
) |
|
|
|
gr.on( |
|
triggers=[fetch_res.click], |
|
fn=fetch_run_results, |
|
inputs=[results_uri, selected_runs, steps], |
|
|
|
outputs=[run_data, plot] |
|
).then( |
|
fn=init_input_component_values, inputs=[run_data, normalization_mode, select_by_language], |
|
outputs=[metrics_to_show, normalization_runs, baseline_runs] |
|
).then( |
|
fn=render_results_table, |
|
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox, |
|
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type], |
|
outputs=[results_df, aggregate_score_cols, column_to_plot] |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
metrics_to_show.input, |
|
task_averaging.input, |
|
normalization_runs.input, |
|
baseline_runs.input, |
|
clip_scores_checkbox.input, |
|
baseline_groupping_mode.input, |
|
aggregate_score_cols.input |
|
], |
|
fn=render_results_table, |
|
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox, |
|
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type], |
|
outputs=[results_df, aggregate_score_cols, column_to_plot] |
|
) |
|
|
|
|
|
gr.on( |
|
triggers=[normalization_mode.input], |
|
fn=init_input_normalization_runs, |
|
inputs=[run_data, normalization_mode], |
|
outputs=[normalization_runs] |
|
).then( |
|
fn=render_results_table, |
|
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox, |
|
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type], |
|
outputs=[results_df, aggregate_score_cols, column_to_plot] |
|
) |
|
|
|
gr.on( |
|
triggers=[export_button.click], |
|
fn=export_results_csv, inputs=[results_df], outputs=[csv] |
|
) |
|
gr.on( |
|
triggers=[check_missing_checkpoints.click], |
|
fn=check_missing_datapoints, inputs=[selected_runs, steps, run_data, check_missing_checkpoints], |
|
outputs=[missing_list, check_missing_checkpoints] |
|
) |
|
|
|
gr.on( |
|
triggers=[check_task_consistency_button.click], |
|
fn=check_task_hash_consistency, inputs=[run_data, check_task_consistency_button], |
|
outputs=[task_consistency_output, check_task_consistency_button] |
|
) |
|
|
|
gr.on( |
|
triggers=[results_df.change, column_to_plot.input, merge_seeds.input, smoothing_steps.input, stds_to_plot.input, |
|
interpolate_checkbox.input, percent_checkbox.input, baseline_window.input, barplot_checkbox.input], |
|
fn=lambda df, col, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox: |
|
prepare_plot_data(df, |
|
col, |
|
merge_seeds, |
|
PlotOptions( |
|
smoothing=smoothing_steps, |
|
interpolate=interpolate_checkbox, |
|
pct=percent_checkbox, |
|
merge_seeds=merge_seeds)), |
|
inputs=[results_df, column_to_plot, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox], |
|
outputs=[plot_data] |
|
).then( |
|
fn=lambda df ,std_dev_run_name, column_name, score_s, variance_window, smoothing_steps: |
|
calculate_statistics(smooth_tasks(df, smoothing_steps), std_dev_run_name, column_name, score_s, variance_window), |
|
inputs=[results_df, std_dev_run, column_to_plot, score_step, baseline_window, smoothing_steps], |
|
outputs=[statistics] |
|
).then( |
|
fn=plot_metric, |
|
inputs=[plot_data, column_to_plot, merge_seeds, percent_checkbox, statistics, stds_to_plot, select_by_language, barplot_checkbox], |
|
outputs=[plot] |
|
).then( |
|
fn=format_statistics, |
|
inputs=[statistics], |
|
outputs=[monotonicity_md, variability_md, randomness_md, ordering_md] |
|
) |
|
|
|
gr.on( |
|
triggers=[export_stats_button.click], |
|
fn=generate_and_export_stats, |
|
inputs=[run_data, std_dev_run, baseline_runs, baseline_groupping_mode, |
|
score_step, baseline_window], |
|
outputs=[stats_csv] |
|
) |
|
|
|
demo.launch() |