admin / viewer /app.py
hynky's picture
hynky HF staff
add viewer + update plots
27411b0
from collections import defaultdict
from typing import get_args
import gradio as gr
import numpy as np
from literals import TASK_CONSISTENCY_BUTTON_LABEL, CHECK_MISSING_DATAPOINTS_BUTTON_LABEL
from plot import prepare_plot_data, plot_metric
from viewer.results import fetch_run_results, fetch_run_list, init_input_normalization_runs, select_runs_by_regex, \
select_runs_by_language, \
init_input_component_values, init_std_dev_runs, render_results_table, export_results_csv, \
check_missing_datapoints
from viewer.stats import generate_and_export_stats, format_statistics, calculate_statistics, smooth_tasks
from viewer.utils import PlotOptions, check_task_hash_consistency, BASELINE_GROUPING_MODE
with gr.Blocks() as demo:
list_of_runs = gr.State([])
plot_data = gr.State([])
statistics = gr.State(defaultdict(lambda: np.nan))
login_button = gr.LoginButton(visible=False)
run_data = gr.State([])
gr.Markdown("# FineWeb Multilingual experiments results explorer V2")
results_uri = gr.Textbox(label="TB HF Repo", value="s3://fineweb-multilingual-v1/evals/results/", visible=True)
with gr.Column():
with gr.Row():
# crop_prefix = gr.Textbox(label="Prefix to crop", value="tb/fineweb-exps-1p82G-")
steps = gr.Textbox(label="Training steps", value="%500",
info="Use \",\" to separate. Use \"%32000\" for every 32000 steps. Use \"-\" for ranges. You can also combine them: \"1000-5000%1000\", 1000 to 5000 every 1000 steps.",
interactive=True)
with gr.Column():
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
interactive=True, label="Select language",
info="Choose a language preset")
mcq_type = gr.Radio(choices=["prob_raw", "prob", "acc"], value="prob", label="MCQ agg metric type")
with gr.Column():
select_by_regex_text = gr.Textbox(label="Regex to select runs",
value="1p46G-gemma-fp-.*-{lang}-.*")
select_by_regex_button = gr.Button("Select matching runs")
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
fetch_res = gr.Button("Fetch results")
with gr.Column():
aggregate_score_cols = gr.Dropdown(
choices=[], interactive=True, multiselect=True,
value=[],
label="Aggregate score columns", allow_custom_value=True,
info="The values from these columns/metrics will be averaged to produce the \"agg_score\""
)
metrics_to_show = gr.Checkboxgroup(
interactive=True,
value=["agg_score_metrics"],
choices=["agg_score_metrics"],
label="Metrics to display",
info="Results for these metrics will be shown")
with gr.Row():
with gr.Column(scale=1):
task_averaging = gr.Checkboxgroup(
interactive=True,
choices=["show averages", "show expanded"],
value=["show averages"],
label="Task averaging",
info="Behaviour for tasks with subsets")
std_dev_run = gr.Dropdown(
interactive=True,
choices=[],
label="Run for std_dev",
info="Select a run to compute std_devs. Must have multiple seeds."
)
with gr.Column(scale=2):
# includes the seed
with gr.Row():
with gr.Column(scale=1):
normalization_runs = gr.Dropdown(
interactive=True,
value=[], choices=[],
multiselect=True,
label="Normalization runs",
info="Select runs to use for normalization"
)
normalization_mode = gr.Radio(
choices=["No norm", "Rescale", "Z-norm"],
value="Z-norm",
label="Normalization mode"
)
clip_scores_checkbox = gr.Checkbox(value=False, label="Clip Scores")
with gr.Column(scale=1):
baseline_runs = gr.Dropdown(
interactive=True,
value=[], choices=[],
multiselect=True,
label="Baseline runs",
info="Select runs to use as baseline"
)
baseline_groupping_mode = gr.Dropdown(choices=list(get_args(BASELINE_GROUPING_MODE)), value="Mean", label="Baseline grouping mode")
results_df = gr.Dataframe(interactive=False)
with gr.Row():
with gr.Column():
export_button = gr.Button("Export Results")
csv = gr.File(interactive=False, visible=False)
with gr.Column():
export_stats_button = gr.Button("Export Stats")
stats_csv = gr.File(interactive=False, visible=False)
check_missing_checkpoints = gr.Button(CHECK_MISSING_DATAPOINTS_BUTTON_LABEL)
check_task_consistency_button = gr.Button(TASK_CONSISTENCY_BUTTON_LABEL, visible=True)
task_consistency_output = gr.Json(label="Task hash consistency", visible=False)
missing_list = gr.Json(label="Missing datapoints", visible=False)
with gr.Row():
column_to_plot = gr.Dropdown(
choices=[], interactive=True,
value='agg_score_macro',
label="Task and metric", allow_custom_value=True)
score_step = gr.Number(
value=14000,
label="Step to use for computing benchmark score",
)
baseline_window = gr.Number(
value=5,
label="Window size for computing variability and randomness",
)
with gr.Row():
with gr.Column():
gr.Markdown("### Monotonicity - Spearman Rank Correlation (steps vs score)")
monotonicity_md = gr.Markdown()
with gr.Column():
gr.Markdown("### Variability (Windowed) - std_dev (all steps of std_dev_run) and SNR (last step)")
variability_md = gr.Markdown()
with gr.Column():
gr.Markdown("### Randomness (Windowed) - distance to RB (in std_dev)")
randomness_md = gr.Markdown()
with gr.Column():
gr.Markdown("### Ordering - Kendall Tau (steps vs score)")
ordering_md = gr.Markdown()
with gr.Row():
merge_seeds = gr.Dropdown(
choices=["none", "min", "max", "mean"],
value='mean',
label="Seed merging")
smoothing_steps = gr.Number(
value=3,
label="Smooth every N datapoints (sliding window)",
)
stds_to_plot = gr.Number(
value=0,
label="plot N stds as error bars",
)
with gr.Column():
interpolate_checkbox = gr.Checkbox(value=False, label="Interpolate missing steps")
percent_checkbox = gr.Checkbox(value=False, label="%")
barplot_checkbox = gr.Checkbox(value=False, label="Bar plot")
plot = gr.Plot()
# run selection
gr.on(
triggers=[results_uri.change],
fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs]
)
gr.on(
triggers=[select_by_regex_button.click],
fn=select_runs_by_regex,
inputs=[list_of_runs, selected_runs, select_by_regex_text, select_by_language], outputs=[selected_runs]
)
gr.on(
triggers=[select_by_language.change, mcq_type.change],
fn=select_runs_by_language,
inputs=[list_of_runs, selected_runs, select_by_language, aggregate_score_cols, mcq_type], outputs=[selected_runs, aggregate_score_cols]
)
demo.load(fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs])
gr.on(
triggers=[selected_runs.change],
fn=init_std_dev_runs,
inputs=[selected_runs, std_dev_run],
outputs=[std_dev_run]
)
# fetch result
gr.on(
triggers=[fetch_res.click],
fn=fetch_run_results,
inputs=[results_uri, selected_runs, steps],
# We set the plot as output, as state has stae has no loading indicator
outputs=[run_data, plot]
).then(
fn=init_input_component_values, inputs=[run_data, normalization_mode, select_by_language],
outputs=[metrics_to_show, normalization_runs, baseline_runs]
).then(
fn=render_results_table,
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
outputs=[results_df, aggregate_score_cols, column_to_plot]
)
# change results table
gr.on(
triggers=[
metrics_to_show.input,
task_averaging.input,
normalization_runs.input,
baseline_runs.input,
clip_scores_checkbox.input,
baseline_groupping_mode.input,
aggregate_score_cols.input
],
fn=render_results_table,
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
outputs=[results_df, aggregate_score_cols, column_to_plot]
)
# On normalization mode we first have to preinit the compoentntns
gr.on(
triggers=[normalization_mode.input],
fn=init_input_normalization_runs,
inputs=[run_data, normalization_mode],
outputs=[normalization_runs]
).then(
fn=render_results_table,
inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
outputs=[results_df, aggregate_score_cols, column_to_plot]
)
# table actions
gr.on(
triggers=[export_button.click],
fn=export_results_csv, inputs=[results_df], outputs=[csv]
)
gr.on(
triggers=[check_missing_checkpoints.click],
fn=check_missing_datapoints, inputs=[selected_runs, steps, run_data, check_missing_checkpoints],
outputs=[missing_list, check_missing_checkpoints]
)
gr.on(
triggers=[check_task_consistency_button.click],
fn=check_task_hash_consistency, inputs=[run_data, check_task_consistency_button],
outputs=[task_consistency_output, check_task_consistency_button]
)
# plot
gr.on(
triggers=[results_df.change, column_to_plot.input, merge_seeds.input, smoothing_steps.input, stds_to_plot.input,
interpolate_checkbox.input, percent_checkbox.input, baseline_window.input, barplot_checkbox.input],
fn=lambda df, col, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox:
prepare_plot_data(df,
col,
merge_seeds,
PlotOptions(
smoothing=smoothing_steps,
interpolate=interpolate_checkbox,
pct=percent_checkbox,
merge_seeds=merge_seeds)),
inputs=[results_df, column_to_plot, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox],
outputs=[plot_data]
).then(
fn=lambda df ,std_dev_run_name, column_name, score_s, variance_window, smoothing_steps:
calculate_statistics(smooth_tasks(df, smoothing_steps), std_dev_run_name, column_name, score_s, variance_window),
inputs=[results_df, std_dev_run, column_to_plot, score_step, baseline_window, smoothing_steps],
outputs=[statistics]
).then(
fn=plot_metric,
inputs=[plot_data, column_to_plot, merge_seeds, percent_checkbox, statistics, stds_to_plot, select_by_language, barplot_checkbox],
outputs=[plot]
).then(
fn=format_statistics,
inputs=[statistics],
outputs=[monotonicity_md, variability_md, randomness_md, ordering_md]
)
gr.on(
triggers=[export_stats_button.click],
fn=generate_and_export_stats,
inputs=[run_data, std_dev_run, baseline_runs, baseline_groupping_mode,
score_step, baseline_window],
outputs=[stats_csv]
)
demo.launch()