File size: 13,456 Bytes
27411b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from collections import defaultdict
from typing import get_args

import gradio as gr
import numpy as np

from literals import TASK_CONSISTENCY_BUTTON_LABEL, CHECK_MISSING_DATAPOINTS_BUTTON_LABEL
from plot import prepare_plot_data, plot_metric
from viewer.results import fetch_run_results, fetch_run_list, init_input_normalization_runs, select_runs_by_regex, \
    select_runs_by_language, \
    init_input_component_values, init_std_dev_runs, render_results_table, export_results_csv, \
    check_missing_datapoints
from viewer.stats import generate_and_export_stats, format_statistics, calculate_statistics, smooth_tasks
from viewer.utils import PlotOptions, check_task_hash_consistency, BASELINE_GROUPING_MODE

with gr.Blocks() as demo:
    list_of_runs = gr.State([])
    plot_data = gr.State([])
    statistics = gr.State(defaultdict(lambda: np.nan))
    login_button = gr.LoginButton(visible=False)
    run_data = gr.State([])
    gr.Markdown("# FineWeb Multilingual experiments results explorer V2")
    results_uri = gr.Textbox(label="TB HF Repo", value="s3://fineweb-multilingual-v1/evals/results/", visible=True)
    with gr.Column():
        with gr.Row():
            # crop_prefix = gr.Textbox(label="Prefix to crop", value="tb/fineweb-exps-1p82G-")
            steps = gr.Textbox(label="Training steps", value="%500",
                               info="Use \",\" to separate. Use \"%32000\" for every 32000 steps. Use \"-\" for ranges. You can also combine them: \"1000-5000%1000\", 1000 to 5000 every 1000 steps.",
                               interactive=True)
            with gr.Column():
                select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
                                                 interactive=True, label="Select language",
                                                 info="Choose a language preset")
                mcq_type = gr.Radio(choices=["prob_raw", "prob", "acc"], value="prob", label="MCQ agg metric type")
            with gr.Column():
                select_by_regex_text = gr.Textbox(label="Regex to select runs",
                                                  value="1p46G-gemma-fp-.*-{lang}-.*")
                select_by_regex_button = gr.Button("Select matching runs")
        selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
        fetch_res = gr.Button("Fetch results")
        with gr.Column():
            aggregate_score_cols = gr.Dropdown(
                choices=[], interactive=True, multiselect=True,
                value=[],
                label="Aggregate score columns", allow_custom_value=True,
                info="The values from these columns/metrics will be averaged to produce the \"agg_score\""
            )
            metrics_to_show = gr.Checkboxgroup(
                interactive=True,
                value=["agg_score_metrics"],
                choices=["agg_score_metrics"],
                label="Metrics to display",
                info="Results for these metrics will be shown")
            with gr.Row():
                with gr.Column(scale=1):
                    task_averaging = gr.Checkboxgroup(
                        interactive=True,
                        choices=["show averages", "show expanded"],
                        value=["show averages"],
                        label="Task averaging",
                        info="Behaviour for tasks with subsets")

                    std_dev_run = gr.Dropdown(
                        interactive=True,
                        choices=[],
                        label="Run for std_dev",
                        info="Select a run to compute std_devs. Must have multiple seeds."
                    )
                with gr.Column(scale=2):
                    # includes the seed
                    with gr.Row():
                        with gr.Column(scale=1):
                            normalization_runs = gr.Dropdown(
                                interactive=True,
                                value=[], choices=[],
                                multiselect=True,
                                label="Normalization runs",
                                info="Select runs to use for normalization"
                            )
                            normalization_mode = gr.Radio(
                                choices=["No norm", "Rescale", "Z-norm"],
                                value="Z-norm",
                                label="Normalization mode"
                            )
                            clip_scores_checkbox = gr.Checkbox(value=False, label="Clip Scores")
                        with gr.Column(scale=1):
                            baseline_runs = gr.Dropdown(
                                interactive=True,
                                value=[], choices=[],
                                multiselect=True,
                                label="Baseline runs",
                                info="Select runs to use as baseline"
                            )
                            baseline_groupping_mode = gr.Dropdown(choices=list(get_args(BASELINE_GROUPING_MODE)), value="Mean", label="Baseline grouping mode")
        results_df = gr.Dataframe(interactive=False)

        with gr.Row():
            with gr.Column():
                export_button = gr.Button("Export Results")
                csv = gr.File(interactive=False, visible=False)
            with gr.Column():
                export_stats_button = gr.Button("Export Stats")
                stats_csv = gr.File(interactive=False, visible=False)

            check_missing_checkpoints = gr.Button(CHECK_MISSING_DATAPOINTS_BUTTON_LABEL)
            check_task_consistency_button = gr.Button(TASK_CONSISTENCY_BUTTON_LABEL, visible=True)

        task_consistency_output = gr.Json(label="Task hash consistency", visible=False)
        missing_list = gr.Json(label="Missing datapoints", visible=False)
        with gr.Row():
            column_to_plot = gr.Dropdown(
                choices=[], interactive=True,
                value='agg_score_macro',
                label="Task and metric", allow_custom_value=True)
            score_step = gr.Number(
                value=14000,
                label="Step to use for computing benchmark score",
            )
            baseline_window = gr.Number(
                value=5,
                label="Window size for computing variability and randomness",
            )
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Monotonicity - Spearman Rank Correlation (steps vs score)")
                monotonicity_md = gr.Markdown()
            with gr.Column():
                gr.Markdown("### Variability (Windowed)  - std_dev (all steps of std_dev_run) and SNR (last step)")
                variability_md = gr.Markdown()
            with gr.Column():
                gr.Markdown("### Randomness (Windowed) - distance to RB (in std_dev)")
                randomness_md = gr.Markdown()
            with gr.Column():
                gr.Markdown("### Ordering - Kendall Tau (steps vs score)")
                ordering_md = gr.Markdown()
        with gr.Row():
            merge_seeds = gr.Dropdown(
                choices=["none", "min", "max", "mean"],
                value='mean',
                label="Seed merging")
            smoothing_steps = gr.Number(
                value=3,
                label="Smooth every N datapoints (sliding window)",
            )
            stds_to_plot = gr.Number(
                value=0,
                label="plot N stds as error bars",
            )
            with gr.Column():
                interpolate_checkbox = gr.Checkbox(value=False, label="Interpolate missing steps")
                percent_checkbox = gr.Checkbox(value=False, label="%")
                barplot_checkbox = gr.Checkbox(value=False, label="Bar plot")
        plot = gr.Plot()

    # run selection
    gr.on(
        triggers=[results_uri.change],
        fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs]
    )
    gr.on(
        triggers=[select_by_regex_button.click],
        fn=select_runs_by_regex,
        inputs=[list_of_runs, selected_runs, select_by_regex_text, select_by_language], outputs=[selected_runs]
    )
    gr.on(
        triggers=[select_by_language.change, mcq_type.change],
        fn=select_runs_by_language,
        inputs=[list_of_runs, selected_runs, select_by_language, aggregate_score_cols, mcq_type], outputs=[selected_runs, aggregate_score_cols]
    )
    demo.load(fn=fetch_run_list, inputs=[results_uri], outputs=[list_of_runs, selected_runs])

    gr.on(
        triggers=[selected_runs.change],
        fn=init_std_dev_runs,
        inputs=[selected_runs, std_dev_run],
        outputs=[std_dev_run]
    )
    # fetch result
    gr.on(
        triggers=[fetch_res.click],
        fn=fetch_run_results,
        inputs=[results_uri, selected_runs, steps],
        # We set the plot as output, as state has stae has no loading indicator
        outputs=[run_data, plot]
    ).then(
        fn=init_input_component_values, inputs=[run_data, normalization_mode, select_by_language],
        outputs=[metrics_to_show, normalization_runs, baseline_runs]
    ).then(
        fn=render_results_table,
        inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
                normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
        outputs=[results_df, aggregate_score_cols, column_to_plot]
    )
    # change results table
    gr.on(
        triggers=[
            metrics_to_show.input,
            task_averaging.input,
            normalization_runs.input,
            baseline_runs.input,
            clip_scores_checkbox.input,
            baseline_groupping_mode.input,
            aggregate_score_cols.input
        ],
        fn=render_results_table,
        inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
                normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
        outputs=[results_df, aggregate_score_cols, column_to_plot]
    )
    
    # On normalization mode we first have to preinit the compoentntns
    gr.on(
        triggers=[normalization_mode.input],
        fn=init_input_normalization_runs,
        inputs=[run_data, normalization_mode],
        outputs=[normalization_runs]
    ).then(
        fn=render_results_table,
        inputs=[run_data, metrics_to_show, task_averaging, normalization_runs, baseline_runs, baseline_groupping_mode, clip_scores_checkbox,
                normalization_mode, aggregate_score_cols, select_by_language, baseline_window, mcq_type],
        outputs=[results_df, aggregate_score_cols, column_to_plot]
    )
    # table actions
    gr.on(
        triggers=[export_button.click],
        fn=export_results_csv, inputs=[results_df], outputs=[csv]
    )
    gr.on(
        triggers=[check_missing_checkpoints.click],
        fn=check_missing_datapoints, inputs=[selected_runs, steps, run_data, check_missing_checkpoints],
        outputs=[missing_list, check_missing_checkpoints]
    )

    gr.on(
        triggers=[check_task_consistency_button.click],
        fn=check_task_hash_consistency, inputs=[run_data, check_task_consistency_button],
        outputs=[task_consistency_output, check_task_consistency_button]
    )
    # plot
    gr.on(
        triggers=[results_df.change, column_to_plot.input, merge_seeds.input, smoothing_steps.input, stds_to_plot.input,
                  interpolate_checkbox.input, percent_checkbox.input, baseline_window.input, barplot_checkbox.input],
        fn=lambda df, col, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox:
        prepare_plot_data(df,
                          col,
                          merge_seeds,
                          PlotOptions(
                              smoothing=smoothing_steps,
                              interpolate=interpolate_checkbox,
                              pct=percent_checkbox,
                              merge_seeds=merge_seeds)),
        inputs=[results_df, column_to_plot, merge_seeds, smoothing_steps, interpolate_checkbox, percent_checkbox],
        outputs=[plot_data]
    ).then(
        fn=lambda df ,std_dev_run_name, column_name, score_s, variance_window, smoothing_steps:
        calculate_statistics(smooth_tasks(df, smoothing_steps), std_dev_run_name, column_name, score_s, variance_window),
        inputs=[results_df, std_dev_run, column_to_plot, score_step, baseline_window, smoothing_steps],
        outputs=[statistics]
    ).then(
        fn=plot_metric,
        inputs=[plot_data, column_to_plot, merge_seeds, percent_checkbox, statistics, stds_to_plot, select_by_language, barplot_checkbox],
        outputs=[plot]
    ).then(
        fn=format_statistics,
        inputs=[statistics],
        outputs=[monotonicity_md, variability_md, randomness_md, ordering_md]
    )

    gr.on(
        triggers=[export_stats_button.click],
        fn=generate_and_export_stats,
        inputs=[run_data, std_dev_run, baseline_runs, baseline_groupping_mode,
                score_step, baseline_window],
        outputs=[stats_csv]
    )

demo.launch()