|
--- |
|
base_model: |
|
- mistralai/Mistral-Nemo-Instruct-2407 |
|
--- |
|
|
|
Ctranslate2 conversion of the model located at [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) |
|
|
|
Conversion script with graphical user interface can be downloaded [HERE](https://github.com/BBC-Esq/Ctranslate2-Converter) |
|
|
|
## Tested with Ctranslate 4.4.0 and Torch 2.2.2 |
|
- NOTE: Ctranslate2 will soon release version 4.5.0, which will require greater than Torch 2.2.2. |
|
|
|
## Example Usage: |
|
|
|
``` |
|
import os |
|
import sys |
|
import ctranslate2 |
|
import gc |
|
import torch |
|
from transformers import AutoTokenizer |
|
|
|
system_message = "You are a helpful person who answers questions." |
|
user_message = "Hello, how are you today? I'd like you to write me a funny poem that is a parody of Milton's Paradise Lost if you are familiar with that famous epic poem?" |
|
|
|
model_dir = r"D:\Scripts\bench_chat\models\mistralai--Mistral-Nemo-Instruct-2407-ct2-int8" |
|
|
|
|
|
def build_prompt_mistral_nemo(): |
|
prompt = f"""<s> |
|
[INST]{system_message} |
|
|
|
{user_message}[/INST]""" |
|
|
|
return prompt |
|
|
|
|
|
def main(): |
|
model_name = os.path.basename(model_dir) |
|
|
|
print(f"\033[32mLoading the model: {model_name}...\033[0m") |
|
|
|
intra_threads = max(os.cpu_count() - 4, 4) |
|
|
|
generator = ctranslate2.Generator( |
|
model_dir, |
|
device="cuda", |
|
compute_type="int8", |
|
intra_threads=intra_threads |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None) |
|
|
|
prompt = build_prompt_mistral_nemo() |
|
|
|
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) |
|
|
|
results_batch = generator.generate_batch( |
|
[tokens], |
|
include_prompt_in_result=False, |
|
max_batch_size=4096, |
|
batch_type="tokens", |
|
beam_size=1, |
|
num_hypotheses=1, |
|
max_length=512, |
|
sampling_temperature=0.0, |
|
) |
|
|
|
output = tokenizer.decode(results_batch[0].sequences_ids[0]) |
|
|
|
print("\nGenerated response:") |
|
print(output) |
|
|
|
del generator |
|
del tokenizer |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |