--- base_model: - mistralai/Mistral-Nemo-Instruct-2407 --- Ctranslate2 conversion of the model located at [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) Conversion script with graphical user interface can be downloaded [HERE](https://github.com/BBC-Esq/Ctranslate2-Converter) ## Tested with Ctranslate 4.4.0 and Torch 2.2.2 - NOTE: Ctranslate2 will soon release version 4.5.0, which will require greater than Torch 2.2.2. ## Example Usage: ``` import os import sys import ctranslate2 import gc import torch from transformers import AutoTokenizer system_message = "You are a helpful person who answers questions." user_message = "Hello, how are you today? I'd like you to write me a funny poem that is a parody of Milton's Paradise Lost if you are familiar with that famous epic poem?" model_dir = r"D:\Scripts\bench_chat\models\mistralai--Mistral-Nemo-Instruct-2407-ct2-int8" def build_prompt_mistral_nemo(): prompt = f""" [INST]{system_message} {user_message}[/INST]""" return prompt def main(): model_name = os.path.basename(model_dir) print(f"\033[32mLoading the model: {model_name}...\033[0m") intra_threads = max(os.cpu_count() - 4, 4) generator = ctranslate2.Generator( model_dir, device="cuda", compute_type="int8", intra_threads=intra_threads ) tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None) prompt = build_prompt_mistral_nemo() tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) results_batch = generator.generate_batch( [tokens], include_prompt_in_result=False, max_batch_size=4096, batch_type="tokens", beam_size=1, num_hypotheses=1, max_length=512, sampling_temperature=0.0, ) output = tokenizer.decode(results_batch[0].sequences_ids[0]) print("\nGenerated response:") print(output) del generator del tokenizer torch.cuda.empty_cache() gc.collect() if __name__ == "__main__": main() ```