LandmarkNER / README.md
constantinSch's picture
Update README.md
aa29f43
metadata
tags:
  - spacy
  - token-classification
language:
  - de
model-index:
  - name: de_pipeline
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.8379052369
          - name: NER Recall
            type: recall
            value: 0.8704663212
          - name: NER F Score
            type: f_score
            value: 0.8538754765

Introduction

German Named Entity Recognition model for recognizing Bavarian landmarks. Fine-tuned "bert-base-german-cased" with 6450 annotated sentences of which 1467 contained landmarks, from subtitles of videos from Bayerischer Rundfunk.

Feature Description
Name de_pipeline
Version 0.1.0
spaCy >=3.3.0,<3.4.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License n/a
Author Constantin Förster

Label Scheme

View label scheme (1 labels for 1 components)
Component Labels
ner LM

Accuracy

Type Score
ENTS_F 85.39
ENTS_P 83.79
ENTS_R 87.05
TRANSFORMER_LOSS 4216.96
NER_LOSS 78511.31