File size: 1,323 Bytes
9a03322 86f32a4 aa29f43 86f32a4 9a03322 5499384 9a03322 cece51f 4a56251 9a03322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
tags:
- spacy
- token-classification
language:
- de
model-index:
- name: de_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8379052369
- name: NER Recall
type: recall
value: 0.8704663212
- name: NER F Score
type: f_score
value: 0.8538754765
---
### Introduction
German Named Entity Recognition model for recognizing Bavarian landmarks. Fine-tuned "bert-base-german-cased" with 6450 annotated sentences of which 1467 contained landmarks, from subtitles of videos from Bayerischer Rundfunk.
| Feature | Description |
| --- | --- |
| **Name** | `de_pipeline` |
| **Version** | `0.1.0` |
| **spaCy** | `>=3.3.0,<3.4.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | Constantin Förster |
### Label Scheme
<details>
<summary>View label scheme (1 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LM` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 85.39 |
| `ENTS_P` | 83.79 |
| `ENTS_R` | 87.05 |
| `TRANSFORMER_LOSS` | 4216.96 |
| `NER_LOSS` | 78511.31 | |