|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ade_drug_effect_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: electramed-small-ADE-DRUG-EFFECT-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ade_drug_effect_ner |
|
type: ade_drug_effect_ner |
|
config: ade |
|
split: train |
|
args: ade |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7745054945054946 |
|
- name: Recall |
|
type: recall |
|
value: 0.6555059523809523 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7100544025790851 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9310355073540336 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# electramed-small-ADE-DRUG-EFFECT-ner |
|
|
|
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_effect_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1630 |
|
- Precision: 0.7745 |
|
- Recall: 0.6555 |
|
- F1: 0.7101 |
|
- Accuracy: 0.9310 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4498 | 1.0 | 336 | 0.3042 | 0.5423 | 0.6295 | 0.5826 | 0.9114 | |
|
| 0.2572 | 2.0 | 672 | 0.2146 | 0.7596 | 0.6194 | 0.6824 | 0.9276 | |
|
| 0.1542 | 3.0 | 1008 | 0.1894 | 0.7806 | 0.6168 | 0.6891 | 0.9299 | |
|
| 0.1525 | 4.0 | 1344 | 0.1771 | 0.7832 | 0.625 | 0.6952 | 0.9309 | |
|
| 0.1871 | 5.0 | 1680 | 0.1723 | 0.7271 | 0.6920 | 0.7091 | 0.9304 | |
|
| 0.1425 | 6.0 | 2016 | 0.1683 | 0.7300 | 0.6979 | 0.7136 | 0.9297 | |
|
| 0.1638 | 7.0 | 2352 | 0.1654 | 0.7432 | 0.6771 | 0.7086 | 0.9306 | |
|
| 0.1592 | 8.0 | 2688 | 0.1635 | 0.7613 | 0.6585 | 0.7062 | 0.9305 | |
|
| 0.1882 | 9.0 | 3024 | 0.1625 | 0.7858 | 0.6373 | 0.7038 | 0.9309 | |
|
| 0.1339 | 10.0 | 3360 | 0.1630 | 0.7745 | 0.6555 | 0.7101 | 0.9310 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|