chintagunta85 commited on
Commit
be19ed1
·
1 Parent(s): aed28f1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - ade_drug_effect_ner
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: electramed-small-ADE-DRUG-EFFECT-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: ade_drug_effect_ner
19
+ type: ade_drug_effect_ner
20
+ config: ade
21
+ split: train
22
+ args: ade
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7745054945054946
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.6555059523809523
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7100544025790851
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9310355073540336
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # electramed-small-ADE-DRUG-EFFECT-ner
42
+
43
+ This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_effect_ner dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.1630
46
+ - Precision: 0.7745
47
+ - Recall: 0.6555
48
+ - F1: 0.7101
49
+ - Accuracy: 0.9310
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.4498 | 1.0 | 336 | 0.3042 | 0.5423 | 0.6295 | 0.5826 | 0.9114 |
81
+ | 0.2572 | 2.0 | 672 | 0.2146 | 0.7596 | 0.6194 | 0.6824 | 0.9276 |
82
+ | 0.1542 | 3.0 | 1008 | 0.1894 | 0.7806 | 0.6168 | 0.6891 | 0.9299 |
83
+ | 0.1525 | 4.0 | 1344 | 0.1771 | 0.7832 | 0.625 | 0.6952 | 0.9309 |
84
+ | 0.1871 | 5.0 | 1680 | 0.1723 | 0.7271 | 0.6920 | 0.7091 | 0.9304 |
85
+ | 0.1425 | 6.0 | 2016 | 0.1683 | 0.7300 | 0.6979 | 0.7136 | 0.9297 |
86
+ | 0.1638 | 7.0 | 2352 | 0.1654 | 0.7432 | 0.6771 | 0.7086 | 0.9306 |
87
+ | 0.1592 | 8.0 | 2688 | 0.1635 | 0.7613 | 0.6585 | 0.7062 | 0.9305 |
88
+ | 0.1882 | 9.0 | 3024 | 0.1625 | 0.7858 | 0.6373 | 0.7038 | 0.9309 |
89
+ | 0.1339 | 10.0 | 3360 | 0.1630 | 0.7745 | 0.6555 | 0.7101 | 0.9310 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.22.1
95
+ - Pytorch 1.12.1+cu113
96
+ - Datasets 2.4.0
97
+ - Tokenizers 0.12.1