chintagunta85
commited on
Commit
·
be19ed1
1
Parent(s):
aed28f1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ade_drug_effect_ner
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: electramed-small-ADE-DRUG-EFFECT-ner
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: ade_drug_effect_ner
|
19 |
+
type: ade_drug_effect_ner
|
20 |
+
config: ade
|
21 |
+
split: train
|
22 |
+
args: ade
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.7745054945054946
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.6555059523809523
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.7100544025790851
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.9310355073540336
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# electramed-small-ADE-DRUG-EFFECT-ner
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_effect_ner dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.1630
|
46 |
+
- Precision: 0.7745
|
47 |
+
- Recall: 0.6555
|
48 |
+
- F1: 0.7101
|
49 |
+
- Accuracy: 0.9310
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 16
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 10
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| 0.4498 | 1.0 | 336 | 0.3042 | 0.5423 | 0.6295 | 0.5826 | 0.9114 |
|
81 |
+
| 0.2572 | 2.0 | 672 | 0.2146 | 0.7596 | 0.6194 | 0.6824 | 0.9276 |
|
82 |
+
| 0.1542 | 3.0 | 1008 | 0.1894 | 0.7806 | 0.6168 | 0.6891 | 0.9299 |
|
83 |
+
| 0.1525 | 4.0 | 1344 | 0.1771 | 0.7832 | 0.625 | 0.6952 | 0.9309 |
|
84 |
+
| 0.1871 | 5.0 | 1680 | 0.1723 | 0.7271 | 0.6920 | 0.7091 | 0.9304 |
|
85 |
+
| 0.1425 | 6.0 | 2016 | 0.1683 | 0.7300 | 0.6979 | 0.7136 | 0.9297 |
|
86 |
+
| 0.1638 | 7.0 | 2352 | 0.1654 | 0.7432 | 0.6771 | 0.7086 | 0.9306 |
|
87 |
+
| 0.1592 | 8.0 | 2688 | 0.1635 | 0.7613 | 0.6585 | 0.7062 | 0.9305 |
|
88 |
+
| 0.1882 | 9.0 | 3024 | 0.1625 | 0.7858 | 0.6373 | 0.7038 | 0.9309 |
|
89 |
+
| 0.1339 | 10.0 | 3360 | 0.1630 | 0.7745 | 0.6555 | 0.7101 | 0.9310 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.22.1
|
95 |
+
- Pytorch 1.12.1+cu113
|
96 |
+
- Datasets 2.4.0
|
97 |
+
- Tokenizers 0.12.1
|