finetuning_summarization

This model is a fine-tuned version of cahya/bert2bert-indonesian-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6759
  • Rouge1: 0.8455
  • Rouge2: 0.742
  • Rougel: 0.8486
  • Rougelsum: 0.8475
  • Gen Len: 23.7368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 5 1.3699 0.8443 0.7258 0.8426 0.8435 25.8421
No log 2.0 10 1.0257 0.8282 0.7115 0.8293 0.8275 25.0
No log 3.0 15 0.7871 0.8384 0.7277 0.8397 0.8396 24.3158
No log 4.0 20 0.7078 0.8339 0.7318 0.8358 0.8348 23.4211
No log 5.0 25 0.6994 0.843 0.7396 0.8451 0.845 24.0
No log 6.0 30 0.6832 0.8445 0.7413 0.8419 0.842 23.4737
No log 7.0 35 0.6768 0.8429 0.742 0.8451 0.8448 23.6842
No log 8.0 40 0.6736 0.843 0.7396 0.8451 0.845 23.6842
No log 9.0 45 0.6750 0.843 0.7396 0.8451 0.845 23.6842
No log 10.0 50 0.6759 0.8455 0.742 0.8486 0.8475 23.7368

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
113
Safetensors
Model size
250M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arzans9/finetuning_summarization

Finetuned
(5)
this model