Indonesian BERT2BERT Summarization Model

Finetuned BERT-base summarization model for Indonesian.

Finetuning Corpus

bert2bert-indonesian-summarization model is based on cahya/bert-base-indonesian-1.5G by cahya, finetuned using id_liputan6 dataset.

Load Finetuned Model

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")

Code Sample

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")

# 
ARTICLE_TO_SUMMARIZE = ""

# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
            min_length=20,
            max_length=80, 
            num_beams=10,
            repetition_penalty=2.5, 
            length_penalty=1.0, 
            early_stopping=True,
            no_repeat_ngram_size=2,
            use_cache=True,
            do_sample = True,
            temperature = 0.8,
            top_k = 50,
            top_p = 0.95)

summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)

Output:


Downloads last month
8,809
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cahya/bert2bert-indonesian-summarization

Finetunes
5 models

Dataset used to train cahya/bert2bert-indonesian-summarization