|
--- |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- /workspace/data/hy/noizy_student_2/ |
|
- generated_from_trainer |
|
model-index: |
|
- name: '' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_2/ - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2249 |
|
- Wer: 0.2783 |
|
- Cer: 0.0508 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 842 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 1600 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 4.9923 | 3.84 | 100 | 3.1562 | 1.0 | 1.0 | |
|
| 2.1775 | 7.69 | 200 | 0.4334 | 0.5804 | 0.1122 | |
|
| 1.3708 | 11.53 | 300 | 0.3106 | 0.4336 | 0.0797 | |
|
| 1.2266 | 15.38 | 400 | 0.2675 | 0.3673 | 0.0673 | |
|
| 1.093 | 19.23 | 500 | 0.2416 | 0.3501 | 0.0633 | |
|
| 0.989 | 23.08 | 600 | 0.2320 | 0.3251 | 0.0611 | |
|
| 0.9518 | 26.91 | 700 | 0.2413 | 0.3193 | 0.0584 | |
|
| 0.9075 | 30.76 | 800 | 0.2354 | 0.3201 | 0.0593 | |
|
| 0.878 | 34.61 | 900 | 0.2278 | 0.3126 | 0.0579 | |
|
| 0.8563 | 38.46 | 1000 | 0.2327 | 0.2963 | 0.0548 | |
|
| 0.8084 | 42.3 | 1100 | 0.2271 | 0.2923 | 0.0541 | |
|
| 0.7845 | 46.15 | 1200 | 0.2333 | 0.2951 | 0.0537 | |
|
| 0.7487 | 49.99 | 1300 | 0.2290 | 0.2888 | 0.0525 | |
|
| 0.7182 | 53.84 | 1400 | 0.2341 | 0.2877 | 0.0535 | |
|
| 0.7095 | 57.69 | 1500 | 0.2291 | 0.2818 | 0.0515 | |
|
| 0.6953 | 61.53 | 1600 | 0.2249 | 0.2783 | 0.0508 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|