File size: 2,615 Bytes
740882f
 
 
 
2d9955e
740882f
 
 
 
 
 
 
 
 
 
 
2d9955e
740882f
2d9955e
 
 
740882f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9955e
740882f
 
 
 
 
2d9955e
740882f
 
 
 
2d9955e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740882f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- automatic-speech-recognition
- /workspace/data/hy/noizy_student_2/
- generated_from_trainer
model-index:
- name: ''
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_2/ - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2249
- Wer: 0.2783
- Cer: 0.0508

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 842
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1600
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 4.9923        | 3.84  | 100  | 3.1562          | 1.0    | 1.0    |
| 2.1775        | 7.69  | 200  | 0.4334          | 0.5804 | 0.1122 |
| 1.3708        | 11.53 | 300  | 0.3106          | 0.4336 | 0.0797 |
| 1.2266        | 15.38 | 400  | 0.2675          | 0.3673 | 0.0673 |
| 1.093         | 19.23 | 500  | 0.2416          | 0.3501 | 0.0633 |
| 0.989         | 23.08 | 600  | 0.2320          | 0.3251 | 0.0611 |
| 0.9518        | 26.91 | 700  | 0.2413          | 0.3193 | 0.0584 |
| 0.9075        | 30.76 | 800  | 0.2354          | 0.3201 | 0.0593 |
| 0.878         | 34.61 | 900  | 0.2278          | 0.3126 | 0.0579 |
| 0.8563        | 38.46 | 1000 | 0.2327          | 0.2963 | 0.0548 |
| 0.8084        | 42.3  | 1100 | 0.2271          | 0.2923 | 0.0541 |
| 0.7845        | 46.15 | 1200 | 0.2333          | 0.2951 | 0.0537 |
| 0.7487        | 49.99 | 1300 | 0.2290          | 0.2888 | 0.0525 |
| 0.7182        | 53.84 | 1400 | 0.2341          | 0.2877 | 0.0535 |
| 0.7095        | 57.69 | 1500 | 0.2291          | 0.2818 | 0.0515 |
| 0.6953        | 61.53 | 1600 | 0.2249          | 0.2783 | 0.0508 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0