File size: 2,615 Bytes
740882f 2d9955e 740882f 2d9955e 740882f 2d9955e 740882f 2d9955e 740882f 2d9955e 740882f 2d9955e 740882f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- /workspace/data/hy/noizy_student_2/
- generated_from_trainer
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_2/ - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2249
- Wer: 0.2783
- Cer: 0.0508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 842
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1600
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 4.9923 | 3.84 | 100 | 3.1562 | 1.0 | 1.0 |
| 2.1775 | 7.69 | 200 | 0.4334 | 0.5804 | 0.1122 |
| 1.3708 | 11.53 | 300 | 0.3106 | 0.4336 | 0.0797 |
| 1.2266 | 15.38 | 400 | 0.2675 | 0.3673 | 0.0673 |
| 1.093 | 19.23 | 500 | 0.2416 | 0.3501 | 0.0633 |
| 0.989 | 23.08 | 600 | 0.2320 | 0.3251 | 0.0611 |
| 0.9518 | 26.91 | 700 | 0.2413 | 0.3193 | 0.0584 |
| 0.9075 | 30.76 | 800 | 0.2354 | 0.3201 | 0.0593 |
| 0.878 | 34.61 | 900 | 0.2278 | 0.3126 | 0.0579 |
| 0.8563 | 38.46 | 1000 | 0.2327 | 0.2963 | 0.0548 |
| 0.8084 | 42.3 | 1100 | 0.2271 | 0.2923 | 0.0541 |
| 0.7845 | 46.15 | 1200 | 0.2333 | 0.2951 | 0.0537 |
| 0.7487 | 49.99 | 1300 | 0.2290 | 0.2888 | 0.0525 |
| 0.7182 | 53.84 | 1400 | 0.2341 | 0.2877 | 0.0535 |
| 0.7095 | 57.69 | 1500 | 0.2291 | 0.2818 | 0.0515 |
| 0.6953 | 61.53 | 1600 | 0.2249 | 0.2783 | 0.0508 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|