|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import init, MarginRankingLoss |
|
from torch.optim import Adam |
|
from distutils.version import LooseVersion |
|
from torch.utils.data import Dataset, DataLoader |
|
from torch.autograd import Variable |
|
import math |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
import nltk |
|
import re |
|
import torch.optim as optim |
|
from tqdm import tqdm |
|
from transformers import AutoModelForMaskedLM |
|
import torch.nn.functional as F |
|
import random |
|
|
|
|
|
|
|
|
|
|
|
maskis = [] |
|
n_y = [] |
|
class MyDataset(Dataset): |
|
def __init__(self,file_name): |
|
global maskis |
|
global n_y |
|
df = pd.read_csv(file_name) |
|
df = df.fillna("") |
|
self.inp_dicts = [] |
|
for r in range(df.shape[0]): |
|
X_init = df['X'][r] |
|
y = df['y'][r] |
|
n_y.append(y) |
|
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) |
|
lb = ' '.join(nl).lower() |
|
x = tokenizer.tokenize(lb) |
|
num_sub_tokens_label = len(x) |
|
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label)) |
|
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') |
|
input_id_chunki = tokens['input_ids'][0].split(510) |
|
input_id_chunks = [] |
|
mask_chunks = [] |
|
mask_chunki = tokens['attention_mask'][0].split(510) |
|
for tensor in input_id_chunki: |
|
input_id_chunks.append(tensor) |
|
for tensor in mask_chunki: |
|
mask_chunks.append(tensor) |
|
xi = torch.full((1,), fill_value=101) |
|
yi = torch.full((1,), fill_value=1) |
|
zi = torch.full((1,), fill_value=102) |
|
for r in range(len(input_id_chunks)): |
|
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) |
|
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) |
|
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) |
|
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) |
|
di = torch.full((1,), fill_value=0) |
|
for i in range(len(input_id_chunks)): |
|
pad_len = 512 - input_id_chunks[i].shape[0] |
|
if pad_len > 0: |
|
for p in range(pad_len): |
|
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) |
|
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) |
|
vb = torch.ones_like(input_id_chunks[0]) |
|
fg = torch.zeros_like(input_id_chunks[0]) |
|
maski = [] |
|
for l in range(len(input_id_chunks)): |
|
masked_pos = [] |
|
for i in range(len(input_id_chunks[l])): |
|
if input_id_chunks[l][i] == tokenizer.mask_token_id: |
|
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id: |
|
continue |
|
masked_pos.append(i) |
|
maski.append(masked_pos) |
|
maskis.append(maski) |
|
while (len(input_id_chunks)<250): |
|
input_id_chunks.append(vb) |
|
mask_chunks.append(fg) |
|
input_ids = torch.stack(input_id_chunks) |
|
attention_mask = torch.stack(mask_chunks) |
|
input_dict = { |
|
'input_ids': input_ids.long(), |
|
'attention_mask': attention_mask.int() |
|
} |
|
self.inp_dicts.append(input_dict) |
|
del input_dict |
|
del input_ids |
|
del attention_mask |
|
del maski |
|
del mask_chunks |
|
del input_id_chunks |
|
del di |
|
del fg |
|
del vb |
|
del mask_chunki |
|
del input_id_chunki |
|
del X_init |
|
del y |
|
del tokens |
|
del x |
|
del lb |
|
del nl |
|
del df |
|
def __len__(self): |
|
return len(self.inp_dicts) |
|
def __getitem__(self,idx): |
|
return self.inp_dicts[idx] |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") |
|
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") |
|
base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") |
|
model.load_state_dict(torch.load('var_runs/model_26_2')) |
|
model.eval() |
|
base_model.eval() |
|
myDs=MyDataset('test.csv') |
|
train_loader=DataLoader(myDs,batch_size=1,shuffle=False) |
|
|
|
|
|
|
|
|
|
|
|
variable_names = [ |
|
|
|
'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score', |
|
|
|
|
|
'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue', |
|
|
|
|
|
'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem', |
|
|
|
|
|
'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking' |
|
] |
|
var_list = [] |
|
for j in range(6): |
|
d =[] |
|
var_list.append(d) |
|
for var in variable_names: |
|
try: |
|
var_list[len(tokenizer.tokenize(var))-1].append(var) |
|
except: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
tot_pll = 0.0 |
|
base_tot_pll = 0.0 |
|
loop = tqdm(train_loader, leave=True) |
|
cntr = 0 |
|
for batch in loop: |
|
maxi = torch.tensor(0.0, requires_grad=True) |
|
for i in range(len(batch['input_ids'])): |
|
cntr+=1 |
|
maski = maskis[cntr-1] |
|
li = len(maski) |
|
input_ids = batch['input_ids'][i][:li] |
|
att_mask = batch['attention_mask'][i][:li] |
|
y = n_y[cntr-1] |
|
ty = tokenizer.encode(y)[1:-1] |
|
num_sub_tokens_label = len(ty) |
|
if num_sub_tokens_label > 6: |
|
continue |
|
print("Ground truth:", y) |
|
m_y = random.choice(var_list[num_sub_tokens_label-1]) |
|
m_ty = tokenizer.encode(m_y)[1:-1] |
|
print("Mock truth:", m_y) |
|
|
|
outputs = model(input_ids, attention_mask = att_mask) |
|
base_outputs = base_model(input_ids, attention_mask = att_mask) |
|
last_hidden_state = outputs[0].squeeze() |
|
base_last_hidden_state = base_outputs[0].squeeze() |
|
l_o_l_sa = [] |
|
base_l_o_l_sa = [] |
|
sum_state = [] |
|
base_sum_state = [] |
|
for t in range(num_sub_tokens_label): |
|
c = [] |
|
d = [] |
|
l_o_l_sa.append(c) |
|
base_l_o_l_sa.append(d) |
|
if len(maski) == 1: |
|
masked_pos = maski[0] |
|
for k in masked_pos: |
|
for t in range(num_sub_tokens_label): |
|
l_o_l_sa[t].append(last_hidden_state[k+t]) |
|
base_l_o_l_sa[t].append(base_last_hidden_state[k+t]) |
|
else: |
|
for p in range(len(maski)): |
|
masked_pos = maski[p] |
|
for k in masked_pos: |
|
for t in range(num_sub_tokens_label): |
|
if (k+t) >= len(last_hidden_state[p]): |
|
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])]) |
|
base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])]) |
|
continue |
|
l_o_l_sa[t].append(last_hidden_state[p][k+t]) |
|
base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t]) |
|
for t in range(num_sub_tokens_label): |
|
sum_state.append(l_o_l_sa[t][0]) |
|
base_sum_state.append(base_l_o_l_sa[t][0]) |
|
for i in range(len(l_o_l_sa[0])): |
|
if i == 0: |
|
continue |
|
for t in range(num_sub_tokens_label): |
|
sum_state[t] = sum_state[t] + l_o_l_sa[t][i] |
|
base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i] |
|
yip = len(l_o_l_sa[0]) |
|
val = 0.0 |
|
m_val = 0.0 |
|
m_base_val = 0.0 |
|
base_val = 0.0 |
|
for t in range(num_sub_tokens_label): |
|
sum_state[t] /= yip |
|
base_sum_state[t] /= yip |
|
probs = F.softmax(sum_state[t], dim=0) |
|
base_probs = F.softmax(base_sum_state[t], dim=0) |
|
val = val - torch.log(probs[ty[t]]) |
|
m_val = m_val - torch.log(probs[m_ty[t]]) |
|
base_val = base_val - torch.log(base_probs[ty[t]]) |
|
m_base_val = m_base_val - torch.log(base_probs[m_ty[t]]) |
|
val = val / num_sub_tokens_label |
|
base_val = base_val / num_sub_tokens_label |
|
m_val = m_val / num_sub_tokens_label |
|
m_base_val = m_base_val / num_sub_tokens_label |
|
print("Sent PLL:") |
|
print(val) |
|
print("Base Sent PLL:") |
|
print(base_val) |
|
print("Net % difference:") |
|
diff = (val-base_val)*100/base_val |
|
print(diff) |
|
tot_pll += val |
|
base_tot_pll+=base_val |
|
print() |
|
print() |
|
print("Mock Sent PLL:") |
|
print(m_val) |
|
print("Mock Base Sent PLL:") |
|
print(m_base_val) |
|
print("Mock Net % difference:") |
|
m_diff = (m_val-m_base_val)*100/m_base_val |
|
print(m_diff) |
|
for c in sum_state: |
|
del c |
|
for d in base_sum_state: |
|
del d |
|
del sum_state |
|
del base_sum_state |
|
for c in l_o_l_sa: |
|
del c |
|
for c in base_l_o_l_sa: |
|
del c |
|
del l_o_l_sa |
|
del base_l_o_l_sa |
|
del maski |
|
del input_ids |
|
del att_mask |
|
del last_hidden_state |
|
del base_last_hidden_state |
|
print("Tot PLL: ", tot_pll) |
|
print("Base Tot PLL: ", base_tot_pll) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|