#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import torch from torch import nn from torch.nn import init, MarginRankingLoss from torch.optim import Adam from distutils.version import LooseVersion from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable import math from transformers import AutoConfig, AutoModel, AutoTokenizer import nltk import re import torch.optim as optim from tqdm import tqdm from transformers import AutoModelForMaskedLM import torch.nn.functional as F import random # In[2]: maskis = [] n_y = [] class MyDataset(Dataset): def __init__(self,file_name): global maskis global n_y df = pd.read_csv(file_name) df = df.fillna("") self.inp_dicts = [] for r in range(df.shape[0]): X_init = df['X'][r] y = df['y'][r] n_y.append(y) nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) lb = ' '.join(nl).lower() x = tokenizer.tokenize(lb) num_sub_tokens_label = len(x) X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label)) tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') input_id_chunki = tokens['input_ids'][0].split(510) input_id_chunks = [] mask_chunks = [] mask_chunki = tokens['attention_mask'][0].split(510) for tensor in input_id_chunki: input_id_chunks.append(tensor) for tensor in mask_chunki: mask_chunks.append(tensor) xi = torch.full((1,), fill_value=101) yi = torch.full((1,), fill_value=1) zi = torch.full((1,), fill_value=102) for r in range(len(input_id_chunks)): input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) di = torch.full((1,), fill_value=0) for i in range(len(input_id_chunks)): pad_len = 512 - input_id_chunks[i].shape[0] if pad_len > 0: for p in range(pad_len): input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) vb = torch.ones_like(input_id_chunks[0]) fg = torch.zeros_like(input_id_chunks[0]) maski = [] for l in range(len(input_id_chunks)): masked_pos = [] for i in range(len(input_id_chunks[l])): if input_id_chunks[l][i] == tokenizer.mask_token_id: #103 if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id: continue masked_pos.append(i) maski.append(masked_pos) maskis.append(maski) while (len(input_id_chunks)<250): input_id_chunks.append(vb) mask_chunks.append(fg) input_ids = torch.stack(input_id_chunks) attention_mask = torch.stack(mask_chunks) input_dict = { 'input_ids': input_ids.long(), 'attention_mask': attention_mask.int() } self.inp_dicts.append(input_dict) del input_dict del input_ids del attention_mask del maski del mask_chunks del input_id_chunks del di del fg del vb del mask_chunki del input_id_chunki del X_init del y del tokens del x del lb del nl del df def __len__(self): return len(self.inp_dicts) def __getitem__(self,idx): return self.inp_dicts[idx] # In[3]: tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") model.load_state_dict(torch.load('var_runs/model_26_2')) model.eval() base_model.eval() myDs=MyDataset('test.csv') train_loader=DataLoader(myDs,batch_size=1,shuffle=False) # In[4]: variable_names = [ # One-word Variable Names 'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score', # Two-word Variable Names 'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue', # Three-word Variable Names 'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem', # Four-word Variable Names 'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking' ] var_list = [] for j in range(6): d =[] var_list.append(d) for var in variable_names: try: var_list[len(tokenizer.tokenize(var))-1].append(var) except: continue # In[5]: tot_pll = 0.0 base_tot_pll = 0.0 loop = tqdm(train_loader, leave=True) cntr = 0 for batch in loop: maxi = torch.tensor(0.0, requires_grad=True) for i in range(len(batch['input_ids'])): cntr+=1 maski = maskis[cntr-1] li = len(maski) input_ids = batch['input_ids'][i][:li] att_mask = batch['attention_mask'][i][:li] y = n_y[cntr-1] ty = tokenizer.encode(y)[1:-1] num_sub_tokens_label = len(ty) if num_sub_tokens_label > 6: continue print("Ground truth:", y) m_y = random.choice(var_list[num_sub_tokens_label-1]) m_ty = tokenizer.encode(m_y)[1:-1] print("Mock truth:", m_y) # input_ids, att_mask = input_ids.to(device),att_mask.to(device) outputs = model(input_ids, attention_mask = att_mask) base_outputs = base_model(input_ids, attention_mask = att_mask) last_hidden_state = outputs[0].squeeze() base_last_hidden_state = base_outputs[0].squeeze() l_o_l_sa = [] base_l_o_l_sa = [] sum_state = [] base_sum_state = [] for t in range(num_sub_tokens_label): c = [] d = [] l_o_l_sa.append(c) base_l_o_l_sa.append(d) if len(maski) == 1: masked_pos = maski[0] for k in masked_pos: for t in range(num_sub_tokens_label): l_o_l_sa[t].append(last_hidden_state[k+t]) base_l_o_l_sa[t].append(base_last_hidden_state[k+t]) else: for p in range(len(maski)): masked_pos = maski[p] for k in masked_pos: for t in range(num_sub_tokens_label): if (k+t) >= len(last_hidden_state[p]): l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])]) base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])]) continue l_o_l_sa[t].append(last_hidden_state[p][k+t]) base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t]) for t in range(num_sub_tokens_label): sum_state.append(l_o_l_sa[t][0]) base_sum_state.append(base_l_o_l_sa[t][0]) for i in range(len(l_o_l_sa[0])): if i == 0: continue for t in range(num_sub_tokens_label): sum_state[t] = sum_state[t] + l_o_l_sa[t][i] base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i] yip = len(l_o_l_sa[0]) val = 0.0 m_val = 0.0 m_base_val = 0.0 base_val = 0.0 for t in range(num_sub_tokens_label): sum_state[t] /= yip base_sum_state[t] /= yip probs = F.softmax(sum_state[t], dim=0) base_probs = F.softmax(base_sum_state[t], dim=0) val = val - torch.log(probs[ty[t]]) m_val = m_val - torch.log(probs[m_ty[t]]) base_val = base_val - torch.log(base_probs[ty[t]]) m_base_val = m_base_val - torch.log(base_probs[m_ty[t]]) val = val / num_sub_tokens_label base_val = base_val / num_sub_tokens_label m_val = m_val / num_sub_tokens_label m_base_val = m_base_val / num_sub_tokens_label print("Sent PLL:") print(val) print("Base Sent PLL:") print(base_val) print("Net % difference:") diff = (val-base_val)*100/base_val print(diff) tot_pll += val base_tot_pll+=base_val print() print() print("Mock Sent PLL:") print(m_val) print("Mock Base Sent PLL:") print(m_base_val) print("Mock Net % difference:") m_diff = (m_val-m_base_val)*100/m_base_val print(m_diff) for c in sum_state: del c for d in base_sum_state: del d del sum_state del base_sum_state for c in l_o_l_sa: del c for c in base_l_o_l_sa: del c del l_o_l_sa del base_l_o_l_sa del maski del input_ids del att_mask del last_hidden_state del base_last_hidden_state print("Tot PLL: ", tot_pll) print("Base Tot PLL: ", base_tot_pll) # In[ ]: