File size: 10,971 Bytes
d45258a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.nn import init, MarginRankingLoss
from torch.optim import Adam
from distutils.version import LooseVersion
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
import math
from transformers import AutoConfig, AutoModel, AutoTokenizer
import nltk
import re
import torch.optim as optim
from tqdm import tqdm
from transformers import AutoModelForMaskedLM
import torch.nn.functional as F
import random


# In[2]:


maskis = []
n_y = []
class MyDataset(Dataset):
    def __init__(self,file_name):
        global maskis
        global n_y
        df = pd.read_csv(file_name)
        df = df.fillna("")
        self.inp_dicts = []
        for r in range(df.shape[0]):
            X_init = df['X'][r]
            y = df['y'][r]
            n_y.append(y)
            nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y)
            lb = ' '.join(nl).lower()
            x = tokenizer.tokenize(lb)
            num_sub_tokens_label = len(x)
            X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
            tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
            input_id_chunki = tokens['input_ids'][0].split(510)
            input_id_chunks = []
            mask_chunks  = []
            mask_chunki = tokens['attention_mask'][0].split(510)
            for tensor in input_id_chunki:
                input_id_chunks.append(tensor)
            for tensor in mask_chunki:
                mask_chunks.append(tensor)
            xi = torch.full((1,), fill_value=101)
            yi = torch.full((1,), fill_value=1)
            zi = torch.full((1,), fill_value=102)
            for r in range(len(input_id_chunks)):
                input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
                input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
                mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
                mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
            di = torch.full((1,), fill_value=0)
            for i in range(len(input_id_chunks)):
                pad_len = 512 - input_id_chunks[i].shape[0]
                if pad_len > 0:
                    for p in range(pad_len):
                        input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
                        mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
            vb = torch.ones_like(input_id_chunks[0])
            fg = torch.zeros_like(input_id_chunks[0])
            maski = []
            for l in range(len(input_id_chunks)):
                masked_pos = []
                for i in range(len(input_id_chunks[l])):
                    if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
                        if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
                            continue
                        masked_pos.append(i)
                maski.append(masked_pos)
            maskis.append(maski)
            while (len(input_id_chunks)<250):
                input_id_chunks.append(vb)
                mask_chunks.append(fg)
            input_ids = torch.stack(input_id_chunks)
            attention_mask = torch.stack(mask_chunks)
            input_dict = {
                'input_ids': input_ids.long(),
                'attention_mask': attention_mask.int()
            }
            self.inp_dicts.append(input_dict)
            del input_dict
            del input_ids
            del attention_mask
            del maski
            del mask_chunks
            del input_id_chunks
            del di
            del fg
            del vb
            del mask_chunki
            del input_id_chunki
            del X_init
            del y
            del tokens
            del x
            del lb
            del nl
        del df
    def __len__(self):
        return len(self.inp_dicts)
    def __getitem__(self,idx):
        return self.inp_dicts[idx]


# In[3]:


tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
model.load_state_dict(torch.load('var_runs/model_26_2'))
model.eval()
base_model.eval()
myDs=MyDataset('test.csv') 
train_loader=DataLoader(myDs,batch_size=1,shuffle=False)


# In[4]:


variable_names = [
    # One-word Variable Names
    'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score',

    # Two-word Variable Names
    'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue',

    # Three-word Variable Names
    'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem',

    # Four-word Variable Names
    'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking'
]
var_list = []
for j in range(6):
    d =[]
    var_list.append(d)
for var in variable_names:
    try:
        var_list[len(tokenizer.tokenize(var))-1].append(var)
    except:
        continue


# In[5]:


tot_pll = 0.0
base_tot_pll = 0.0
loop = tqdm(train_loader, leave=True)
cntr = 0
for batch in loop:
    maxi = torch.tensor(0.0, requires_grad=True)
    for i in range(len(batch['input_ids'])):            
        cntr+=1
        maski = maskis[cntr-1]
        li = len(maski)
        input_ids = batch['input_ids'][i][:li]
        att_mask = batch['attention_mask'][i][:li]
        y = n_y[cntr-1]
        ty = tokenizer.encode(y)[1:-1]
        num_sub_tokens_label = len(ty)
        if num_sub_tokens_label > 6:
            continue
        print("Ground truth:", y)
        m_y = random.choice(var_list[num_sub_tokens_label-1])
        m_ty = tokenizer.encode(m_y)[1:-1]
        print("Mock truth:", m_y)
#            input_ids, att_mask = input_ids.to(device),att_mask.to(device)
        outputs = model(input_ids, attention_mask = att_mask)
        base_outputs = base_model(input_ids, attention_mask = att_mask)
        last_hidden_state = outputs[0].squeeze()
        base_last_hidden_state = base_outputs[0].squeeze()
        l_o_l_sa = []
        base_l_o_l_sa = []
        sum_state = []
        base_sum_state = []
        for t in range(num_sub_tokens_label):
            c = []
            d = []
            l_o_l_sa.append(c)
            base_l_o_l_sa.append(d)
        if len(maski) == 1:
            masked_pos = maski[0]
            for k in masked_pos:
                for t in range(num_sub_tokens_label):
                    l_o_l_sa[t].append(last_hidden_state[k+t])
                    base_l_o_l_sa[t].append(base_last_hidden_state[k+t])
        else:
            for p in range(len(maski)):
                masked_pos = maski[p]
                for k in masked_pos:
                    for t in range(num_sub_tokens_label):
                        if (k+t) >= len(last_hidden_state[p]):
                            l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
                            base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])])
                            continue
                        l_o_l_sa[t].append(last_hidden_state[p][k+t])
                        base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t])
        for t in range(num_sub_tokens_label):
            sum_state.append(l_o_l_sa[t][0])
            base_sum_state.append(base_l_o_l_sa[t][0])
        for i in range(len(l_o_l_sa[0])):
            if i == 0:
                continue
            for t in range(num_sub_tokens_label):
                sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
                base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i]
        yip = len(l_o_l_sa[0])
        val = 0.0
        m_val = 0.0
        m_base_val = 0.0
        base_val = 0.0
        for t in range(num_sub_tokens_label):
            sum_state[t] /= yip
            base_sum_state[t] /= yip
            probs = F.softmax(sum_state[t], dim=0)
            base_probs = F.softmax(base_sum_state[t], dim=0)
            val = val - torch.log(probs[ty[t]])
            m_val = m_val - torch.log(probs[m_ty[t]])
            base_val = base_val - torch.log(base_probs[ty[t]])
            m_base_val = m_base_val - torch.log(base_probs[m_ty[t]])
        val = val / num_sub_tokens_label
        base_val = base_val / num_sub_tokens_label
        m_val = m_val / num_sub_tokens_label
        m_base_val = m_base_val / num_sub_tokens_label
        print("Sent PLL:")
        print(val)
        print("Base Sent PLL:")
        print(base_val)
        print("Net % difference:")
        diff = (val-base_val)*100/base_val
        print(diff)
        tot_pll += val
        base_tot_pll+=base_val
        print()
        print()
        print("Mock Sent PLL:")
        print(m_val)
        print("Mock Base Sent PLL:")
        print(m_base_val)
        print("Mock Net % difference:")
        m_diff = (m_val-m_base_val)*100/m_base_val
        print(m_diff)
        for c in sum_state:
            del c
        for d in base_sum_state:
            del d
        del sum_state
        del base_sum_state
        for c in l_o_l_sa:
            del c
        for c in base_l_o_l_sa:
            del c
        del l_o_l_sa
        del base_l_o_l_sa
        del maski
        del input_ids
        del att_mask
        del last_hidden_state
        del base_last_hidden_state
print("Tot PLL: ", tot_pll)
print("Base Tot PLL: ", base_tot_pll)


# In[ ]: