bge-small-4096 / README.md
andersonbcdefg's picture
Create README.md
3ec18ca
metadata
tags:
  - mteb
model-index:
  - name: andersonbcdefg/bge-small-4096
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 68.74626865671641
          - type: ap
            value: 31.113961861085855
          - type: f1
            value: 62.628656720790275
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 81.30347499999999
          - type: ap
            value: 76.05639977935193
          - type: f1
            value: 81.23180016825499
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.566
          - type: f1
            value: 38.014543974125615
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.445
          - type: map_at_10
            value: 44.157999999999994
          - type: map_at_100
            value: 45.169
          - type: map_at_1000
            value: 45.178000000000004
          - type: map_at_3
            value: 39.545
          - type: map_at_5
            value: 42.233
          - type: mrr_at_1
            value: 29.445
          - type: mrr_at_10
            value: 44.157999999999994
          - type: mrr_at_100
            value: 45.169
          - type: mrr_at_1000
            value: 45.178000000000004
          - type: mrr_at_3
            value: 39.545
          - type: mrr_at_5
            value: 42.233
          - type: ndcg_at_1
            value: 29.445
          - type: ndcg_at_10
            value: 52.446000000000005
          - type: ndcg_at_100
            value: 56.782
          - type: ndcg_at_1000
            value: 56.989999999999995
          - type: ndcg_at_3
            value: 42.935
          - type: ndcg_at_5
            value: 47.833999999999996
          - type: precision_at_1
            value: 29.445
          - type: precision_at_10
            value: 7.8950000000000005
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 17.591
          - type: precision_at_5
            value: 12.959000000000001
          - type: recall_at_1
            value: 29.445
          - type: recall_at_10
            value: 78.947
          - type: recall_at_100
            value: 97.937
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 52.774
          - type: recall_at_5
            value: 64.794
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 43.85187820924144
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 29.5939502757938
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 58.539409343284674
          - type: mrr
            value: 71.58982983775228
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 82.31440765254087
          - type: cos_sim_spearman
            value: 81.59884723689632
          - type: euclidean_pearson
            value: 80.65818473893147
          - type: euclidean_spearman
            value: 81.40004752638717
          - type: manhattan_pearson
            value: 80.52256901536644
          - type: manhattan_spearman
            value: 80.57292024599603
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 79.98376623376623
          - type: f1
            value: 79.91981901371503
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 37.79541356345093
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 26.760513681350375
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.794
          - type: map_at_10
            value: 33.361000000000004
          - type: map_at_100
            value: 34.86
          - type: map_at_1000
            value: 35
          - type: map_at_3
            value: 30.579
          - type: map_at_5
            value: 31.996000000000002
          - type: mrr_at_1
            value: 30.186
          - type: mrr_at_10
            value: 39.681
          - type: mrr_at_100
            value: 40.616
          - type: mrr_at_1000
            value: 40.669
          - type: mrr_at_3
            value: 37.244
          - type: mrr_at_5
            value: 38.588
          - type: ndcg_at_1
            value: 30.186
          - type: ndcg_at_10
            value: 39.34
          - type: ndcg_at_100
            value: 45.266
          - type: ndcg_at_1000
            value: 47.9
          - type: ndcg_at_3
            value: 35.164
          - type: ndcg_at_5
            value: 36.854
          - type: precision_at_1
            value: 30.186
          - type: precision_at_10
            value: 7.639
          - type: precision_at_100
            value: 1.328
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 17.31
          - type: precision_at_5
            value: 12.275
          - type: recall_at_1
            value: 23.794
          - type: recall_at_10
            value: 50.463
          - type: recall_at_100
            value: 75.268
          - type: recall_at_1000
            value: 93.138
          - type: recall_at_3
            value: 37.797
          - type: recall_at_5
            value: 42.985
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.968999999999998
          - type: map_at_10
            value: 23.846999999999998
          - type: map_at_100
            value: 24.712999999999997
          - type: map_at_1000
            value: 24.833
          - type: map_at_3
            value: 22.024
          - type: map_at_5
            value: 23.087
          - type: mrr_at_1
            value: 22.038
          - type: mrr_at_10
            value: 27.808
          - type: mrr_at_100
            value: 28.532999999999998
          - type: mrr_at_1000
            value: 28.604000000000003
          - type: mrr_at_3
            value: 26.029999999999998
          - type: mrr_at_5
            value: 27.122
          - type: ndcg_at_1
            value: 22.038
          - type: ndcg_at_10
            value: 27.559
          - type: ndcg_at_100
            value: 31.541999999999998
          - type: ndcg_at_1000
            value: 34.343
          - type: ndcg_at_3
            value: 24.585
          - type: ndcg_at_5
            value: 26.026
          - type: precision_at_1
            value: 22.038
          - type: precision_at_10
            value: 5.019
          - type: precision_at_100
            value: 0.8920000000000001
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 11.423
          - type: precision_at_5
            value: 8.28
          - type: recall_at_1
            value: 17.968999999999998
          - type: recall_at_10
            value: 34.583000000000006
          - type: recall_at_100
            value: 51.849000000000004
          - type: recall_at_1000
            value: 70.832
          - type: recall_at_3
            value: 26.057000000000002
          - type: recall_at_5
            value: 29.816
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.183999999999997
          - type: map_at_10
            value: 40.245
          - type: map_at_100
            value: 41.324
          - type: map_at_1000
            value: 41.402
          - type: map_at_3
            value: 37.395
          - type: map_at_5
            value: 38.964999999999996
          - type: mrr_at_1
            value: 33.981
          - type: mrr_at_10
            value: 43.471
          - type: mrr_at_100
            value: 44.303
          - type: mrr_at_1000
            value: 44.352999999999994
          - type: mrr_at_3
            value: 41.149
          - type: mrr_at_5
            value: 42.466
          - type: ndcg_at_1
            value: 33.981
          - type: ndcg_at_10
            value: 45.776
          - type: ndcg_at_100
            value: 50.441
          - type: ndcg_at_1000
            value: 52.16
          - type: ndcg_at_3
            value: 40.756
          - type: ndcg_at_5
            value: 43.132
          - type: precision_at_1
            value: 33.981
          - type: precision_at_10
            value: 7.617999999999999
          - type: precision_at_100
            value: 1.083
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 18.558
          - type: precision_at_5
            value: 12.915
          - type: recall_at_1
            value: 29.183999999999997
          - type: recall_at_10
            value: 59.114
          - type: recall_at_100
            value: 79.549
          - type: recall_at_1000
            value: 91.925
          - type: recall_at_3
            value: 45.551
          - type: recall_at_5
            value: 51.38399999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.286
          - type: map_at_10
            value: 27.143
          - type: map_at_100
            value: 28.107
          - type: map_at_1000
            value: 28.212
          - type: map_at_3
            value: 25.149
          - type: map_at_5
            value: 26.179999999999996
          - type: mrr_at_1
            value: 22.034000000000002
          - type: mrr_at_10
            value: 28.875
          - type: mrr_at_100
            value: 29.785
          - type: mrr_at_1000
            value: 29.876
          - type: mrr_at_3
            value: 27.023999999999997
          - type: mrr_at_5
            value: 28.058
          - type: ndcg_at_1
            value: 22.034000000000002
          - type: ndcg_at_10
            value: 31.148999999999997
          - type: ndcg_at_100
            value: 35.936
          - type: ndcg_at_1000
            value: 38.682
          - type: ndcg_at_3
            value: 27.230999999999998
          - type: ndcg_at_5
            value: 29.034
          - type: precision_at_1
            value: 22.034000000000002
          - type: precision_at_10
            value: 4.836
          - type: precision_at_100
            value: 0.754
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 11.562999999999999
          - type: precision_at_5
            value: 8.068
          - type: recall_at_1
            value: 20.286
          - type: recall_at_10
            value: 41.827999999999996
          - type: recall_at_100
            value: 63.922000000000004
          - type: recall_at_1000
            value: 84.639
          - type: recall_at_3
            value: 31.227
          - type: recall_at_5
            value: 35.546
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.488
          - type: map_at_10
            value: 18.595
          - type: map_at_100
            value: 19.783
          - type: map_at_1000
            value: 19.918
          - type: map_at_3
            value: 16.274
          - type: map_at_5
            value: 17.558
          - type: mrr_at_1
            value: 16.791
          - type: mrr_at_10
            value: 22.53
          - type: mrr_at_100
            value: 23.651
          - type: mrr_at_1000
            value: 23.738999999999997
          - type: mrr_at_3
            value: 20.232
          - type: mrr_at_5
            value: 21.644
          - type: ndcg_at_1
            value: 16.791
          - type: ndcg_at_10
            value: 22.672
          - type: ndcg_at_100
            value: 28.663
          - type: ndcg_at_1000
            value: 31.954
          - type: ndcg_at_3
            value: 18.372
          - type: ndcg_at_5
            value: 20.47
          - type: precision_at_1
            value: 16.791
          - type: precision_at_10
            value: 4.2540000000000004
          - type: precision_at_100
            value: 0.8370000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 8.706
          - type: precision_at_5
            value: 6.666999999999999
          - type: recall_at_1
            value: 13.488
          - type: recall_at_10
            value: 31.451
          - type: recall_at_100
            value: 58.085
          - type: recall_at_1000
            value: 81.792
          - type: recall_at_3
            value: 19.811
          - type: recall_at_5
            value: 24.973
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.436
          - type: map_at_10
            value: 29.105999999999998
          - type: map_at_100
            value: 30.442000000000004
          - type: map_at_1000
            value: 30.567
          - type: map_at_3
            value: 26.430999999999997
          - type: map_at_5
            value: 27.866000000000003
          - type: mrr_at_1
            value: 26.083000000000002
          - type: mrr_at_10
            value: 33.975
          - type: mrr_at_100
            value: 35.014
          - type: mrr_at_1000
            value: 35.07
          - type: mrr_at_3
            value: 31.649
          - type: mrr_at_5
            value: 32.944
          - type: ndcg_at_1
            value: 26.083000000000002
          - type: ndcg_at_10
            value: 34.229
          - type: ndcg_at_100
            value: 40.439
          - type: ndcg_at_1000
            value: 43.081
          - type: ndcg_at_3
            value: 29.64
          - type: ndcg_at_5
            value: 31.704
          - type: precision_at_1
            value: 26.083000000000002
          - type: precision_at_10
            value: 6.246
          - type: precision_at_100
            value: 1.1199999999999999
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 13.858999999999998
          - type: precision_at_5
            value: 10.01
          - type: recall_at_1
            value: 21.436
          - type: recall_at_10
            value: 44.938
          - type: recall_at_100
            value: 72.029
          - type: recall_at_1000
            value: 90.009
          - type: recall_at_3
            value: 31.954
          - type: recall_at_5
            value: 37.303
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.217
          - type: map_at_10
            value: 25.16
          - type: map_at_100
            value: 26.490000000000002
          - type: map_at_1000
            value: 26.619
          - type: map_at_3
            value: 22.926
          - type: map_at_5
            value: 24.251
          - type: mrr_at_1
            value: 22.831000000000003
          - type: mrr_at_10
            value: 30.009000000000004
          - type: mrr_at_100
            value: 31.045
          - type: mrr_at_1000
            value: 31.122
          - type: mrr_at_3
            value: 28.025
          - type: mrr_at_5
            value: 29.07
          - type: ndcg_at_1
            value: 22.831000000000003
          - type: ndcg_at_10
            value: 29.664
          - type: ndcg_at_100
            value: 35.900999999999996
          - type: ndcg_at_1000
            value: 38.932
          - type: ndcg_at_3
            value: 26.051000000000002
          - type: ndcg_at_5
            value: 27.741
          - type: precision_at_1
            value: 22.831000000000003
          - type: precision_at_10
            value: 5.479
          - type: precision_at_100
            value: 1.027
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 12.481
          - type: precision_at_5
            value: 8.973
          - type: recall_at_1
            value: 18.217
          - type: recall_at_10
            value: 38.336
          - type: recall_at_100
            value: 65.854
          - type: recall_at_1000
            value: 87.498
          - type: recall_at_3
            value: 28.158
          - type: recall_at_5
            value: 32.841
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.100666666666665
          - type: map_at_10
            value: 26.22883333333333
          - type: map_at_100
            value: 27.34241666666667
          - type: map_at_1000
            value: 27.468416666666666
          - type: map_at_3
            value: 23.953916666666668
          - type: map_at_5
            value: 25.20125
          - type: mrr_at_1
            value: 22.729249999999997
          - type: mrr_at_10
            value: 29.86491666666667
          - type: mrr_at_100
            value: 30.76925
          - type: mrr_at_1000
            value: 30.846333333333337
          - type: mrr_at_3
            value: 27.733999999999998
          - type: mrr_at_5
            value: 28.94058333333333
          - type: ndcg_at_1
            value: 22.729249999999997
          - type: ndcg_at_10
            value: 30.708250000000003
          - type: ndcg_at_100
            value: 35.89083333333333
          - type: ndcg_at_1000
            value: 38.75891666666666
          - type: ndcg_at_3
            value: 26.661083333333334
          - type: ndcg_at_5
            value: 28.54
          - type: precision_at_1
            value: 22.729249999999997
          - type: precision_at_10
            value: 5.433833333333333
          - type: precision_at_100
            value: 0.9486666666666665
          - type: precision_at_1000
            value: 0.13808333333333334
          - type: precision_at_3
            value: 12.292166666666668
          - type: precision_at_5
            value: 8.825
          - type: recall_at_1
            value: 19.100666666666665
          - type: recall_at_10
            value: 40.54208333333334
          - type: recall_at_100
            value: 63.67975
          - type: recall_at_1000
            value: 84.13574999999999
          - type: recall_at_3
            value: 29.311000000000003
          - type: recall_at_5
            value: 34.1105
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.762
          - type: map_at_10
            value: 23.905
          - type: map_at_100
            value: 24.663
          - type: map_at_1000
            value: 24.765
          - type: map_at_3
            value: 22.032
          - type: map_at_5
            value: 23.025000000000002
          - type: mrr_at_1
            value: 20.244999999999997
          - type: mrr_at_10
            value: 26.162999999999997
          - type: mrr_at_100
            value: 26.907999999999998
          - type: mrr_at_1000
            value: 26.987
          - type: mrr_at_3
            value: 24.361
          - type: mrr_at_5
            value: 25.326999999999998
          - type: ndcg_at_1
            value: 20.244999999999997
          - type: ndcg_at_10
            value: 27.577
          - type: ndcg_at_100
            value: 31.473000000000003
          - type: ndcg_at_1000
            value: 34.217999999999996
          - type: ndcg_at_3
            value: 24.092
          - type: ndcg_at_5
            value: 25.657000000000004
          - type: precision_at_1
            value: 20.244999999999997
          - type: precision_at_10
            value: 4.433
          - type: precision_at_100
            value: 0.692
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 10.634
          - type: precision_at_5
            value: 7.362
          - type: recall_at_1
            value: 17.762
          - type: recall_at_10
            value: 36.661
          - type: recall_at_100
            value: 54.581999999999994
          - type: recall_at_1000
            value: 75.28099999999999
          - type: recall_at_3
            value: 27.084999999999997
          - type: recall_at_5
            value: 31.064999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.998000000000001
          - type: map_at_10
            value: 18.926000000000002
          - type: map_at_100
            value: 19.836000000000002
          - type: map_at_1000
            value: 19.96
          - type: map_at_3
            value: 16.932
          - type: map_at_5
            value: 17.963
          - type: mrr_at_1
            value: 15.692
          - type: mrr_at_10
            value: 22.206
          - type: mrr_at_100
            value: 23.021
          - type: mrr_at_1000
            value: 23.108999999999998
          - type: mrr_at_3
            value: 20.114
          - type: mrr_at_5
            value: 21.241
          - type: ndcg_at_1
            value: 15.692
          - type: ndcg_at_10
            value: 22.997999999999998
          - type: ndcg_at_100
            value: 27.541
          - type: ndcg_at_1000
            value: 30.758000000000003
          - type: ndcg_at_3
            value: 19.117
          - type: ndcg_at_5
            value: 20.778
          - type: precision_at_1
            value: 15.692
          - type: precision_at_10
            value: 4.277
          - type: precision_at_100
            value: 0.774
          - type: precision_at_1000
            value: 0.122
          - type: precision_at_3
            value: 9.027000000000001
          - type: precision_at_5
            value: 6.641
          - type: recall_at_1
            value: 12.998000000000001
          - type: recall_at_10
            value: 32.135999999999996
          - type: recall_at_100
            value: 52.937
          - type: recall_at_1000
            value: 76.348
          - type: recall_at_3
            value: 21.292
          - type: recall_at_5
            value: 25.439
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.219
          - type: map_at_10
            value: 27.306
          - type: map_at_100
            value: 28.337
          - type: map_at_1000
            value: 28.459
          - type: map_at_3
            value: 25.423000000000002
          - type: map_at_5
            value: 26.375999999999998
          - type: mrr_at_1
            value: 23.787
          - type: mrr_at_10
            value: 30.977
          - type: mrr_at_100
            value: 31.85
          - type: mrr_at_1000
            value: 31.939
          - type: mrr_at_3
            value: 29.073
          - type: mrr_at_5
            value: 30.095
          - type: ndcg_at_1
            value: 23.787
          - type: ndcg_at_10
            value: 31.615
          - type: ndcg_at_100
            value: 36.641
          - type: ndcg_at_1000
            value: 39.707
          - type: ndcg_at_3
            value: 27.994000000000003
          - type: ndcg_at_5
            value: 29.508000000000003
          - type: precision_at_1
            value: 23.787
          - type: precision_at_10
            value: 5.271
          - type: precision_at_100
            value: 0.865
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 12.748999999999999
          - type: precision_at_5
            value: 8.806
          - type: recall_at_1
            value: 20.219
          - type: recall_at_10
            value: 41.108
          - type: recall_at_100
            value: 63.596
          - type: recall_at_1000
            value: 85.54899999999999
          - type: recall_at_3
            value: 31.129
          - type: recall_at_5
            value: 34.845
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.949
          - type: map_at_10
            value: 26.629
          - type: map_at_100
            value: 28.006999999999998
          - type: map_at_1000
            value: 28.221
          - type: map_at_3
            value: 24.099999999999998
          - type: map_at_5
            value: 25.487
          - type: mrr_at_1
            value: 24.111
          - type: mrr_at_10
            value: 30.592000000000002
          - type: mrr_at_100
            value: 31.448999999999998
          - type: mrr_at_1000
            value: 31.538
          - type: mrr_at_3
            value: 28.128999999999998
          - type: mrr_at_5
            value: 29.503
          - type: ndcg_at_1
            value: 24.111
          - type: ndcg_at_10
            value: 31.373
          - type: ndcg_at_100
            value: 36.897999999999996
          - type: ndcg_at_1000
            value: 40.288000000000004
          - type: ndcg_at_3
            value: 26.895000000000003
          - type: ndcg_at_5
            value: 29.009
          - type: precision_at_1
            value: 24.111
          - type: precision_at_10
            value: 6.067
          - type: precision_at_100
            value: 1.269
          - type: precision_at_1000
            value: 0.22
          - type: precision_at_3
            value: 12.385
          - type: precision_at_5
            value: 9.249
          - type: recall_at_1
            value: 19.949
          - type: recall_at_10
            value: 40.394000000000005
          - type: recall_at_100
            value: 65.812
          - type: recall_at_1000
            value: 88.247
          - type: recall_at_3
            value: 28.116000000000003
          - type: recall_at_5
            value: 33.4
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.905999999999999
          - type: map_at_10
            value: 20.523
          - type: map_at_100
            value: 21.547
          - type: map_at_1000
            value: 21.665
          - type: map_at_3
            value: 18.182000000000002
          - type: map_at_5
            value: 19.661
          - type: mrr_at_1
            value: 14.972
          - type: mrr_at_10
            value: 22.092
          - type: mrr_at_100
            value: 23.055999999999997
          - type: mrr_at_1000
            value: 23.150000000000002
          - type: mrr_at_3
            value: 19.778000000000002
          - type: mrr_at_5
            value: 21.229
          - type: ndcg_at_1
            value: 14.972
          - type: ndcg_at_10
            value: 24.547
          - type: ndcg_at_100
            value: 29.948999999999998
          - type: ndcg_at_1000
            value: 33.084
          - type: ndcg_at_3
            value: 20.036
          - type: ndcg_at_5
            value: 22.567
          - type: precision_at_1
            value: 14.972
          - type: precision_at_10
            value: 4.067
          - type: precision_at_100
            value: 0.743
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 8.811
          - type: precision_at_5
            value: 6.654
          - type: recall_at_1
            value: 13.905999999999999
          - type: recall_at_10
            value: 35.493
          - type: recall_at_100
            value: 60.67399999999999
          - type: recall_at_1000
            value: 84.371
          - type: recall_at_3
            value: 23.555
          - type: recall_at_5
            value: 29.729
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.529
          - type: map_at_10
            value: 12.794
          - type: map_at_100
            value: 14.315
          - type: map_at_1000
            value: 14.523
          - type: map_at_3
            value: 10.367999999999999
          - type: map_at_5
            value: 11.546
          - type: mrr_at_1
            value: 16.872999999999998
          - type: mrr_at_10
            value: 25.709
          - type: mrr_at_100
            value: 26.907999999999998
          - type: mrr_at_1000
            value: 26.962000000000003
          - type: mrr_at_3
            value: 22.486
          - type: mrr_at_5
            value: 24.245
          - type: ndcg_at_1
            value: 16.872999999999998
          - type: ndcg_at_10
            value: 19.005
          - type: ndcg_at_100
            value: 25.990999999999996
          - type: ndcg_at_1000
            value: 29.955
          - type: ndcg_at_3
            value: 14.573
          - type: ndcg_at_5
            value: 16.118
          - type: precision_at_1
            value: 16.872999999999998
          - type: precision_at_10
            value: 6.235
          - type: precision_at_100
            value: 1.374
          - type: precision_at_1000
            value: 0.21
          - type: precision_at_3
            value: 10.793
          - type: precision_at_5
            value: 8.73
          - type: recall_at_1
            value: 7.529
          - type: recall_at_10
            value: 24.007
          - type: recall_at_100
            value: 48.742000000000004
          - type: recall_at_1000
            value: 71.35000000000001
          - type: recall_at_3
            value: 13.467
          - type: recall_at_5
            value: 17.502000000000002
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.614
          - type: map_at_10
            value: 11.42
          - type: map_at_100
            value: 15.873000000000001
          - type: map_at_1000
            value: 17.021
          - type: map_at_3
            value: 8.495
          - type: map_at_5
            value: 9.790000000000001
          - type: mrr_at_1
            value: 42
          - type: mrr_at_10
            value: 52.477
          - type: mrr_at_100
            value: 53.095000000000006
          - type: mrr_at_1000
            value: 53.135
          - type: mrr_at_3
            value: 49.833
          - type: mrr_at_5
            value: 51.183
          - type: ndcg_at_1
            value: 31.374999999999996
          - type: ndcg_at_10
            value: 25.27
          - type: ndcg_at_100
            value: 29.709999999999997
          - type: ndcg_at_1000
            value: 36.975
          - type: ndcg_at_3
            value: 27.688000000000002
          - type: ndcg_at_5
            value: 25.987
          - type: precision_at_1
            value: 42
          - type: precision_at_10
            value: 21.2
          - type: precision_at_100
            value: 7.053
          - type: precision_at_1000
            value: 1.512
          - type: precision_at_3
            value: 32.333
          - type: precision_at_5
            value: 26.6
          - type: recall_at_1
            value: 5.614
          - type: recall_at_10
            value: 16.112000000000002
          - type: recall_at_100
            value: 36.165000000000006
          - type: recall_at_1000
            value: 60.362
          - type: recall_at_3
            value: 9.761000000000001
          - type: recall_at_5
            value: 12.279
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 40.085
          - type: f1
            value: 35.53934111316537
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.185
          - type: map_at_10
            value: 44.491
          - type: map_at_100
            value: 45.204
          - type: map_at_1000
            value: 45.254
          - type: map_at_3
            value: 42.006
          - type: map_at_5
            value: 43.516
          - type: mrr_at_1
            value: 37.024
          - type: mrr_at_10
            value: 47.524
          - type: mrr_at_100
            value: 48.185
          - type: mrr_at_1000
            value: 48.227
          - type: mrr_at_3
            value: 45.086999999999996
          - type: mrr_at_5
            value: 46.575
          - type: ndcg_at_1
            value: 37.024
          - type: ndcg_at_10
            value: 50.126000000000005
          - type: ndcg_at_100
            value: 53.577
          - type: ndcg_at_1000
            value: 54.906
          - type: ndcg_at_3
            value: 45.25
          - type: ndcg_at_5
            value: 47.842
          - type: precision_at_1
            value: 37.024
          - type: precision_at_10
            value: 7.132
          - type: precision_at_100
            value: 0.898
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 18.767
          - type: precision_at_5
            value: 12.676000000000002
          - type: recall_at_1
            value: 34.185
          - type: recall_at_10
            value: 64.703
          - type: recall_at_100
            value: 80.58
          - type: recall_at_1000
            value: 90.742
          - type: recall_at_3
            value: 51.483000000000004
          - type: recall_at_5
            value: 57.775
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.358
          - type: map_at_10
            value: 16.391
          - type: map_at_100
            value: 17.698
          - type: map_at_1000
            value: 17.912
          - type: map_at_3
            value: 13.831
          - type: map_at_5
            value: 15.187000000000001
          - type: mrr_at_1
            value: 18.673000000000002
          - type: mrr_at_10
            value: 26.907999999999998
          - type: mrr_at_100
            value: 27.842
          - type: mrr_at_1000
            value: 27.933000000000003
          - type: mrr_at_3
            value: 24.486
          - type: mrr_at_5
            value: 25.766
          - type: ndcg_at_1
            value: 18.673000000000002
          - type: ndcg_at_10
            value: 22.137
          - type: ndcg_at_100
            value: 28.126
          - type: ndcg_at_1000
            value: 32.489000000000004
          - type: ndcg_at_3
            value: 18.723
          - type: ndcg_at_5
            value: 19.858
          - type: precision_at_1
            value: 18.673000000000002
          - type: precision_at_10
            value: 6.389
          - type: precision_at_100
            value: 1.262
          - type: precision_at_1000
            value: 0.202
          - type: precision_at_3
            value: 12.757
          - type: precision_at_5
            value: 9.753
          - type: recall_at_1
            value: 9.358
          - type: recall_at_10
            value: 28.605000000000004
          - type: recall_at_100
            value: 51.713
          - type: recall_at_1000
            value: 78.408
          - type: recall_at_3
            value: 17.674
          - type: recall_at_5
            value: 21.97
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.997999999999998
          - type: map_at_10
            value: 32.957
          - type: map_at_100
            value: 33.972
          - type: map_at_1000
            value: 34.072
          - type: map_at_3
            value: 30.44
          - type: map_at_5
            value: 31.869999999999997
          - type: mrr_at_1
            value: 45.995999999999995
          - type: mrr_at_10
            value: 54.473000000000006
          - type: mrr_at_100
            value: 55.103
          - type: mrr_at_1000
            value: 55.139
          - type: mrr_at_3
            value: 52.349999999999994
          - type: mrr_at_5
            value: 53.61900000000001
          - type: ndcg_at_1
            value: 45.995999999999995
          - type: ndcg_at_10
            value: 41.333
          - type: ndcg_at_100
            value: 45.635999999999996
          - type: ndcg_at_1000
            value: 47.847
          - type: ndcg_at_3
            value: 36.825
          - type: ndcg_at_5
            value: 39.099000000000004
          - type: precision_at_1
            value: 45.995999999999995
          - type: precision_at_10
            value: 9.020999999999999
          - type: precision_at_100
            value: 1.244
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 23.34
          - type: precision_at_5
            value: 15.8
          - type: recall_at_1
            value: 22.997999999999998
          - type: recall_at_10
            value: 45.105000000000004
          - type: recall_at_100
            value: 62.188
          - type: recall_at_1000
            value: 76.907
          - type: recall_at_3
            value: 35.010000000000005
          - type: recall_at_5
            value: 39.5
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 80.0944
          - type: ap
            value: 74.43301569395831
          - type: f1
            value: 80.04407647044388
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 10.171
          - type: map_at_10
            value: 17.558
          - type: map_at_100
            value: 18.694
          - type: map_at_1000
            value: 18.787000000000003
          - type: map_at_3
            value: 14.826
          - type: map_at_5
            value: 16.249
          - type: mrr_at_1
            value: 10.473
          - type: mrr_at_10
            value: 17.967
          - type: mrr_at_100
            value: 19.089
          - type: mrr_at_1000
            value: 19.177
          - type: mrr_at_3
            value: 15.222
          - type: mrr_at_5
            value: 16.655
          - type: ndcg_at_1
            value: 10.473
          - type: ndcg_at_10
            value: 22.148
          - type: ndcg_at_100
            value: 28.028
          - type: ndcg_at_1000
            value: 30.659
          - type: ndcg_at_3
            value: 16.474
          - type: ndcg_at_5
            value: 19.017
          - type: precision_at_1
            value: 10.473
          - type: precision_at_10
            value: 3.7969999999999997
          - type: precision_at_100
            value: 0.6779999999999999
          - type: precision_at_1000
            value: 0.09
          - type: precision_at_3
            value: 7.187
          - type: precision_at_5
            value: 5.599
          - type: recall_at_1
            value: 10.171
          - type: recall_at_10
            value: 36.459
          - type: recall_at_100
            value: 64.512
          - type: recall_at_1000
            value: 85.27900000000001
          - type: recall_at_3
            value: 20.868000000000002
          - type: recall_at_5
            value: 26.933
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.35795713634292
          - type: f1
            value: 89.72064544336776
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 66.4546283629731
          - type: f1
            value: 49.487271168215095
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.58238063214527
          - type: f1
            value: 65.54281371907213
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.47343644922664
          - type: f1
            value: 72.80522894672785
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 32.53600917473176
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.04699774280647
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.984352865575797
          - type: mrr
            value: 32.02736001972659
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.666
          - type: map_at_10
            value: 10.066
          - type: map_at_100
            value: 12.794
          - type: map_at_1000
            value: 14.184
          - type: map_at_3
            value: 7.622
          - type: map_at_5
            value: 8.587
          - type: mrr_at_1
            value: 39.318999999999996
          - type: mrr_at_10
            value: 47.678
          - type: mrr_at_100
            value: 48.355
          - type: mrr_at_1000
            value: 48.400999999999996
          - type: mrr_at_3
            value: 45.82
          - type: mrr_at_5
            value: 46.656
          - type: ndcg_at_1
            value: 37.926
          - type: ndcg_at_10
            value: 29.049999999999997
          - type: ndcg_at_100
            value: 26.826
          - type: ndcg_at_1000
            value: 35.841
          - type: ndcg_at_3
            value: 33.513
          - type: ndcg_at_5
            value: 31.227
          - type: precision_at_1
            value: 39.318999999999996
          - type: precision_at_10
            value: 21.424000000000003
          - type: precision_at_100
            value: 7.231999999999999
          - type: precision_at_1000
            value: 2.012
          - type: precision_at_3
            value: 30.857
          - type: precision_at_5
            value: 26.378
          - type: recall_at_1
            value: 4.666
          - type: recall_at_10
            value: 13.898
          - type: recall_at_100
            value: 26.983
          - type: recall_at_1000
            value: 59.485
          - type: recall_at_3
            value: 8.953
          - type: recall_at_5
            value: 10.496
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.26
          - type: map_at_10
            value: 17.907999999999998
          - type: map_at_100
            value: 19.245
          - type: map_at_1000
            value: 19.339000000000002
          - type: map_at_3
            value: 14.634
          - type: map_at_5
            value: 16.386
          - type: mrr_at_1
            value: 10.574
          - type: mrr_at_10
            value: 19.438
          - type: mrr_at_100
            value: 20.638
          - type: mrr_at_1000
            value: 20.715
          - type: mrr_at_3
            value: 16.276
          - type: mrr_at_5
            value: 17.971999999999998
          - type: ndcg_at_1
            value: 10.574
          - type: ndcg_at_10
            value: 23.451
          - type: ndcg_at_100
            value: 29.982
          - type: ndcg_at_1000
            value: 32.449
          - type: ndcg_at_3
            value: 16.817
          - type: ndcg_at_5
            value: 19.867
          - type: precision_at_1
            value: 10.574
          - type: precision_at_10
            value: 4.609
          - type: precision_at_100
            value: 0.8330000000000001
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 8.266
          - type: precision_at_5
            value: 6.6739999999999995
          - type: recall_at_1
            value: 9.26
          - type: recall_at_10
            value: 39.224
          - type: recall_at_100
            value: 69.107
          - type: recall_at_1000
            value: 87.908
          - type: recall_at_3
            value: 21.490000000000002
          - type: recall_at_5
            value: 28.560999999999996
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 65.655
          - type: map_at_10
            value: 79.199
          - type: map_at_100
            value: 79.937
          - type: map_at_1000
            value: 79.964
          - type: map_at_3
            value: 76.19399999999999
          - type: map_at_5
            value: 78.08800000000001
          - type: mrr_at_1
            value: 75.53999999999999
          - type: mrr_at_10
            value: 82.89
          - type: mrr_at_100
            value: 83.074
          - type: mrr_at_1000
            value: 83.077
          - type: mrr_at_3
            value: 81.577
          - type: mrr_at_5
            value: 82.452
          - type: ndcg_at_1
            value: 75.53999999999999
          - type: ndcg_at_10
            value: 83.62899999999999
          - type: ndcg_at_100
            value: 85.411
          - type: ndcg_at_1000
            value: 85.646
          - type: ndcg_at_3
            value: 80.23700000000001
          - type: ndcg_at_5
            value: 82.107
          - type: precision_at_1
            value: 75.53999999999999
          - type: precision_at_10
            value: 12.695
          - type: precision_at_100
            value: 1.493
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 34.983
          - type: precision_at_5
            value: 23.164
          - type: recall_at_1
            value: 65.655
          - type: recall_at_10
            value: 92.269
          - type: recall_at_100
            value: 98.598
          - type: recall_at_1000
            value: 99.815
          - type: recall_at_3
            value: 82.616
          - type: recall_at_5
            value: 87.75800000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 43.67844919460687
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 54.32866004447611
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.238
          - type: map_at_10
            value: 8.539
          - type: map_at_100
            value: 10.267
          - type: map_at_1000
            value: 10.552999999999999
          - type: map_at_3
            value: 6.165
          - type: map_at_5
            value: 7.22
          - type: mrr_at_1
            value: 15.9
          - type: mrr_at_10
            value: 25.557999999999996
          - type: mrr_at_100
            value: 26.867
          - type: mrr_at_1000
            value: 26.939
          - type: mrr_at_3
            value: 22.633
          - type: mrr_at_5
            value: 24.233
          - type: ndcg_at_1
            value: 15.9
          - type: ndcg_at_10
            value: 14.954
          - type: ndcg_at_100
            value: 22.486
          - type: ndcg_at_1000
            value: 27.986
          - type: ndcg_at_3
            value: 14.069
          - type: ndcg_at_5
            value: 12.200999999999999
          - type: precision_at_1
            value: 15.9
          - type: precision_at_10
            value: 7.9399999999999995
          - type: precision_at_100
            value: 1.8929999999999998
          - type: precision_at_1000
            value: 0.32299999999999995
          - type: precision_at_3
            value: 13.5
          - type: precision_at_5
            value: 10.9
          - type: recall_at_1
            value: 3.238
          - type: recall_at_10
            value: 16.1
          - type: recall_at_100
            value: 38.427
          - type: recall_at_1000
            value: 65.498
          - type: recall_at_3
            value: 8.212
          - type: recall_at_5
            value: 11.032
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 80.7612029200118
          - type: cos_sim_spearman
            value: 74.17706899450974
          - type: euclidean_pearson
            value: 78.6240925347838
          - type: euclidean_spearman
            value: 74.22104652352341
          - type: manhattan_pearson
            value: 78.49956480878576
          - type: manhattan_spearman
            value: 74.0528957569391
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 80.0377294417705
          - type: cos_sim_spearman
            value: 72.19570903733732
          - type: euclidean_pearson
            value: 77.060604990743
          - type: euclidean_spearman
            value: 71.54251658956483
          - type: manhattan_pearson
            value: 77.28301977645965
          - type: manhattan_spearman
            value: 71.77449045278667
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.69841558517969
          - type: cos_sim_spearman
            value: 80.54022353649157
          - type: euclidean_pearson
            value: 80.03651743688496
          - type: euclidean_spearman
            value: 80.45116824930123
          - type: manhattan_pearson
            value: 79.89688370680031
          - type: manhattan_spearman
            value: 80.27208259746283
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 79.92235427443056
          - type: cos_sim_spearman
            value: 76.20243980748161
          - type: euclidean_pearson
            value: 79.28031963400572
          - type: euclidean_spearman
            value: 76.3568261868673
          - type: manhattan_pearson
            value: 79.24527845959733
          - type: manhattan_spearman
            value: 76.39886696744185
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 84.2762365324788
          - type: cos_sim_spearman
            value: 85.19929628214842
          - type: euclidean_pearson
            value: 84.82568872953075
          - type: euclidean_spearman
            value: 85.11039387706913
          - type: manhattan_pearson
            value: 84.72922084197847
          - type: manhattan_spearman
            value: 85.04448532444505
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.23256564746382
          - type: cos_sim_spearman
            value: 81.92968415429543
          - type: euclidean_pearson
            value: 81.12612888308936
          - type: euclidean_spearman
            value: 81.97396557448675
          - type: manhattan_pearson
            value: 81.15685601512081
          - type: manhattan_spearman
            value: 82.01929408689
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.35057935029289
          - type: cos_sim_spearman
            value: 86.60658025867397
          - type: euclidean_pearson
            value: 86.48666975508912
          - type: euclidean_spearman
            value: 86.70310223264862
          - type: manhattan_pearson
            value: 86.23959282751626
          - type: manhattan_spearman
            value: 86.48318896577922
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.15375299804011
          - type: cos_sim_spearman
            value: 65.4588500819246
          - type: euclidean_pearson
            value: 65.60180021985416
          - type: euclidean_spearman
            value: 65.55596512146833
          - type: manhattan_pearson
            value: 66.12421335157649
          - type: manhattan_spearman
            value: 66.05163838991123
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 81.82391915730462
          - type: cos_sim_spearman
            value: 81.93942545767499
          - type: euclidean_pearson
            value: 83.16752744889406
          - type: euclidean_spearman
            value: 82.31380947581034
          - type: manhattan_pearson
            value: 82.98915741609575
          - type: manhattan_spearman
            value: 82.16585239338073
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 77.19504204180527
          - type: mrr
            value: 92.85429983959396
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 49.528
          - type: map_at_10
            value: 57.62199999999999
          - type: map_at_100
            value: 58.544
          - type: map_at_1000
            value: 58.573
          - type: map_at_3
            value: 54.56999999999999
          - type: map_at_5
            value: 56.552
          - type: mrr_at_1
            value: 52
          - type: mrr_at_10
            value: 58.939
          - type: mrr_at_100
            value: 59.653
          - type: mrr_at_1000
            value: 59.68
          - type: mrr_at_3
            value: 56.389
          - type: mrr_at_5
            value: 57.989000000000004
          - type: ndcg_at_1
            value: 52
          - type: ndcg_at_10
            value: 61.964
          - type: ndcg_at_100
            value: 65.871
          - type: ndcg_at_1000
            value: 66.724
          - type: ndcg_at_3
            value: 56.621
          - type: ndcg_at_5
            value: 59.551
          - type: precision_at_1
            value: 52
          - type: precision_at_10
            value: 8.333
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 21.778
          - type: precision_at_5
            value: 14.933
          - type: recall_at_1
            value: 49.528
          - type: recall_at_10
            value: 74.2
          - type: recall_at_100
            value: 91.5
          - type: recall_at_1000
            value: 98.333
          - type: recall_at_3
            value: 60.06700000000001
          - type: recall_at_5
            value: 67.133
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81287128712871
          - type: cos_sim_ap
            value: 95.15039468118793
          - type: cos_sim_f1
            value: 90.48817312531455
          - type: cos_sim_precision
            value: 91.08409321175279
          - type: cos_sim_recall
            value: 89.9
          - type: dot_accuracy
            value: 99.78019801980199
          - type: dot_ap
            value: 93.60256835857994
          - type: dot_f1
            value: 88.73096446700508
          - type: dot_precision
            value: 90.10309278350516
          - type: dot_recall
            value: 87.4
          - type: euclidean_accuracy
            value: 99.81188118811882
          - type: euclidean_ap
            value: 95.15954231276913
          - type: euclidean_f1
            value: 90.48096192384769
          - type: euclidean_precision
            value: 90.66265060240963
          - type: euclidean_recall
            value: 90.3
          - type: manhattan_accuracy
            value: 99.81188118811882
          - type: manhattan_ap
            value: 95.17107000565468
          - type: manhattan_f1
            value: 90.5
          - type: manhattan_precision
            value: 90.5
          - type: manhattan_recall
            value: 90.5
          - type: max_accuracy
            value: 99.81287128712871
          - type: max_ap
            value: 95.17107000565468
          - type: max_f1
            value: 90.5
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 51.77488276525734
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.30657214418171
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 47.84571922992432
          - type: mrr
            value: 48.549107142857146
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.840750357585556
          - type: cos_sim_spearman
            value: 29.832953864936567
          - type: dot_pearson
            value: 30.499687946740657
          - type: dot_spearman
            value: 30.73436062481656
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.16999999999999998
          - type: map_at_10
            value: 1.014
          - type: map_at_100
            value: 5.623
          - type: map_at_1000
            value: 15.190999999999999
          - type: map_at_3
            value: 0.377
          - type: map_at_5
            value: 0.577
          - type: mrr_at_1
            value: 68
          - type: mrr_at_10
            value: 74.45
          - type: mrr_at_100
            value: 74.846
          - type: mrr_at_1000
            value: 74.846
          - type: mrr_at_3
            value: 71.333
          - type: mrr_at_5
            value: 73.533
          - type: ndcg_at_1
            value: 64
          - type: ndcg_at_10
            value: 47.52
          - type: ndcg_at_100
            value: 37.419999999999995
          - type: ndcg_at_1000
            value: 36.318
          - type: ndcg_at_3
            value: 51.13999999999999
          - type: ndcg_at_5
            value: 49.101
          - type: precision_at_1
            value: 68
          - type: precision_at_10
            value: 50.8
          - type: precision_at_100
            value: 39.160000000000004
          - type: precision_at_1000
            value: 16.948
          - type: precision_at_3
            value: 52
          - type: precision_at_5
            value: 51.6
          - type: recall_at_1
            value: 0.16999999999999998
          - type: recall_at_10
            value: 1.269
          - type: recall_at_100
            value: 8.937000000000001
          - type: recall_at_1000
            value: 35.036
          - type: recall_at_3
            value: 0.396
          - type: recall_at_5
            value: 0.6669999999999999
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.672
          - type: map_at_10
            value: 6.739000000000001
          - type: map_at_100
            value: 12.006
          - type: map_at_1000
            value: 13.474
          - type: map_at_3
            value: 2.617
          - type: map_at_5
            value: 4.329000000000001
          - type: mrr_at_1
            value: 20.408
          - type: mrr_at_10
            value: 30.764000000000003
          - type: mrr_at_100
            value: 32.457
          - type: mrr_at_1000
            value: 32.481
          - type: mrr_at_3
            value: 26.531
          - type: mrr_at_5
            value: 28.877999999999997
          - type: ndcg_at_1
            value: 18.367
          - type: ndcg_at_10
            value: 17.471999999999998
          - type: ndcg_at_100
            value: 29.341
          - type: ndcg_at_1000
            value: 41.005
          - type: ndcg_at_3
            value: 14.64
          - type: ndcg_at_5
            value: 17.039
          - type: precision_at_1
            value: 20.408
          - type: precision_at_10
            value: 17.551
          - type: precision_at_100
            value: 6.673
          - type: precision_at_1000
            value: 1.4160000000000001
          - type: precision_at_3
            value: 14.966
          - type: precision_at_5
            value: 18.776
          - type: recall_at_1
            value: 1.672
          - type: recall_at_10
            value: 12.795000000000002
          - type: recall_at_100
            value: 41.289
          - type: recall_at_1000
            value: 76.947
          - type: recall_at_3
            value: 3.334
          - type: recall_at_5
            value: 6.864000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.3424
          - type: ap
            value: 13.45149708639965
          - type: f1
            value: 53.278180518373574
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 57.60045274476513
          - type: f1
            value: 57.9395926195531
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 36.649067825169446
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.68599868868093
          - type: cos_sim_ap
            value: 65.7938550603812
          - type: cos_sim_f1
            value: 61.81946735800141
          - type: cos_sim_precision
            value: 55.85604770017035
          - type: cos_sim_recall
            value: 69.2084432717678
          - type: dot_accuracy
            value: 82.09453418370389
          - type: dot_ap
            value: 61.00867337905922
          - type: dot_f1
            value: 58.56196783349101
          - type: dot_precision
            value: 53.06472353193313
          - type: dot_recall
            value: 65.32981530343008
          - type: euclidean_accuracy
            value: 83.68599868868093
          - type: euclidean_ap
            value: 66.17065796133883
          - type: euclidean_f1
            value: 62.440610152538135
          - type: euclidean_precision
            value: 59.3393536121673
          - type: euclidean_recall
            value: 65.88390501319262
          - type: manhattan_accuracy
            value: 83.57870894677237
          - type: manhattan_ap
            value: 65.89925640001532
          - type: manhattan_f1
            value: 62.2255119664446
          - type: manhattan_precision
            value: 58.43373493975904
          - type: manhattan_recall
            value: 66.54353562005278
          - type: max_accuracy
            value: 83.68599868868093
          - type: max_ap
            value: 66.17065796133883
          - type: max_f1
            value: 62.440610152538135
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.68579966623976
          - type: cos_sim_ap
            value: 83.2666595805096
          - type: cos_sim_f1
            value: 75.11536297129996
          - type: cos_sim_precision
            value: 73.24943294065999
          - type: cos_sim_recall
            value: 77.07884200800738
          - type: dot_accuracy
            value: 86.76213761788334
          - type: dot_ap
            value: 80.85199640255004
          - type: dot_f1
            value: 73.27634898520165
          - type: dot_precision
            value: 71.70756872282409
          - type: dot_recall
            value: 74.91530643671081
          - type: euclidean_accuracy
            value: 87.79640625606395
          - type: euclidean_ap
            value: 83.52666327503474
          - type: euclidean_f1
            value: 75.37022886875523
          - type: euclidean_precision
            value: 71.4522249051397
          - type: euclidean_recall
            value: 79.74283954419464
          - type: manhattan_accuracy
            value: 87.80804905499282
          - type: manhattan_ap
            value: 83.4995899990913
          - type: manhattan_f1
            value: 75.44320420223242
          - type: manhattan_precision
            value: 71.68307223069458
          - type: manhattan_recall
            value: 79.6196489066831
          - type: max_accuracy
            value: 87.80804905499282
          - type: max_ap
            value: 83.52666327503474
          - type: max_f1
            value: 75.44320420223242