andersonbcdefg commited on
Commit
3ec18ca
·
1 Parent(s): 1228b7b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2599 -0
README.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: andersonbcdefg/bge-small-4096
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 68.74626865671641
18
+ - type: ap
19
+ value: 31.113961861085855
20
+ - type: f1
21
+ value: 62.628656720790275
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 81.30347499999999
33
+ - type: ap
34
+ value: 76.05639977935193
35
+ - type: f1
36
+ value: 81.23180016825499
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 38.566
48
+ - type: f1
49
+ value: 38.014543974125615
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 29.445
61
+ - type: map_at_10
62
+ value: 44.157999999999994
63
+ - type: map_at_100
64
+ value: 45.169
65
+ - type: map_at_1000
66
+ value: 45.178000000000004
67
+ - type: map_at_3
68
+ value: 39.545
69
+ - type: map_at_5
70
+ value: 42.233
71
+ - type: mrr_at_1
72
+ value: 29.445
73
+ - type: mrr_at_10
74
+ value: 44.157999999999994
75
+ - type: mrr_at_100
76
+ value: 45.169
77
+ - type: mrr_at_1000
78
+ value: 45.178000000000004
79
+ - type: mrr_at_3
80
+ value: 39.545
81
+ - type: mrr_at_5
82
+ value: 42.233
83
+ - type: ndcg_at_1
84
+ value: 29.445
85
+ - type: ndcg_at_10
86
+ value: 52.446000000000005
87
+ - type: ndcg_at_100
88
+ value: 56.782
89
+ - type: ndcg_at_1000
90
+ value: 56.989999999999995
91
+ - type: ndcg_at_3
92
+ value: 42.935
93
+ - type: ndcg_at_5
94
+ value: 47.833999999999996
95
+ - type: precision_at_1
96
+ value: 29.445
97
+ - type: precision_at_10
98
+ value: 7.8950000000000005
99
+ - type: precision_at_100
100
+ value: 0.979
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 17.591
105
+ - type: precision_at_5
106
+ value: 12.959000000000001
107
+ - type: recall_at_1
108
+ value: 29.445
109
+ - type: recall_at_10
110
+ value: 78.947
111
+ - type: recall_at_100
112
+ value: 97.937
113
+ - type: recall_at_1000
114
+ value: 99.502
115
+ - type: recall_at_3
116
+ value: 52.774
117
+ - type: recall_at_5
118
+ value: 64.794
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 43.85187820924144
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 29.5939502757938
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 58.539409343284674
152
+ - type: mrr
153
+ value: 71.58982983775228
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 82.31440765254087
165
+ - type: cos_sim_spearman
166
+ value: 81.59884723689632
167
+ - type: euclidean_pearson
168
+ value: 80.65818473893147
169
+ - type: euclidean_spearman
170
+ value: 81.40004752638717
171
+ - type: manhattan_pearson
172
+ value: 80.52256901536644
173
+ - type: manhattan_spearman
174
+ value: 80.57292024599603
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 79.98376623376623
186
+ - type: f1
187
+ value: 79.91981901371503
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 37.79541356345093
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 26.760513681350375
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 23.794
221
+ - type: map_at_10
222
+ value: 33.361000000000004
223
+ - type: map_at_100
224
+ value: 34.86
225
+ - type: map_at_1000
226
+ value: 35.0
227
+ - type: map_at_3
228
+ value: 30.579
229
+ - type: map_at_5
230
+ value: 31.996000000000002
231
+ - type: mrr_at_1
232
+ value: 30.186
233
+ - type: mrr_at_10
234
+ value: 39.681
235
+ - type: mrr_at_100
236
+ value: 40.616
237
+ - type: mrr_at_1000
238
+ value: 40.669
239
+ - type: mrr_at_3
240
+ value: 37.244
241
+ - type: mrr_at_5
242
+ value: 38.588
243
+ - type: ndcg_at_1
244
+ value: 30.186
245
+ - type: ndcg_at_10
246
+ value: 39.34
247
+ - type: ndcg_at_100
248
+ value: 45.266
249
+ - type: ndcg_at_1000
250
+ value: 47.9
251
+ - type: ndcg_at_3
252
+ value: 35.164
253
+ - type: ndcg_at_5
254
+ value: 36.854
255
+ - type: precision_at_1
256
+ value: 30.186
257
+ - type: precision_at_10
258
+ value: 7.639
259
+ - type: precision_at_100
260
+ value: 1.328
261
+ - type: precision_at_1000
262
+ value: 0.183
263
+ - type: precision_at_3
264
+ value: 17.31
265
+ - type: precision_at_5
266
+ value: 12.275
267
+ - type: recall_at_1
268
+ value: 23.794
269
+ - type: recall_at_10
270
+ value: 50.463
271
+ - type: recall_at_100
272
+ value: 75.268
273
+ - type: recall_at_1000
274
+ value: 93.138
275
+ - type: recall_at_3
276
+ value: 37.797
277
+ - type: recall_at_5
278
+ value: 42.985
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 17.968999999999998
290
+ - type: map_at_10
291
+ value: 23.846999999999998
292
+ - type: map_at_100
293
+ value: 24.712999999999997
294
+ - type: map_at_1000
295
+ value: 24.833
296
+ - type: map_at_3
297
+ value: 22.024
298
+ - type: map_at_5
299
+ value: 23.087
300
+ - type: mrr_at_1
301
+ value: 22.038
302
+ - type: mrr_at_10
303
+ value: 27.808
304
+ - type: mrr_at_100
305
+ value: 28.532999999999998
306
+ - type: mrr_at_1000
307
+ value: 28.604000000000003
308
+ - type: mrr_at_3
309
+ value: 26.029999999999998
310
+ - type: mrr_at_5
311
+ value: 27.122
312
+ - type: ndcg_at_1
313
+ value: 22.038
314
+ - type: ndcg_at_10
315
+ value: 27.559
316
+ - type: ndcg_at_100
317
+ value: 31.541999999999998
318
+ - type: ndcg_at_1000
319
+ value: 34.343
320
+ - type: ndcg_at_3
321
+ value: 24.585
322
+ - type: ndcg_at_5
323
+ value: 26.026
324
+ - type: precision_at_1
325
+ value: 22.038
326
+ - type: precision_at_10
327
+ value: 5.019
328
+ - type: precision_at_100
329
+ value: 0.8920000000000001
330
+ - type: precision_at_1000
331
+ value: 0.13899999999999998
332
+ - type: precision_at_3
333
+ value: 11.423
334
+ - type: precision_at_5
335
+ value: 8.28
336
+ - type: recall_at_1
337
+ value: 17.968999999999998
338
+ - type: recall_at_10
339
+ value: 34.583000000000006
340
+ - type: recall_at_100
341
+ value: 51.849000000000004
342
+ - type: recall_at_1000
343
+ value: 70.832
344
+ - type: recall_at_3
345
+ value: 26.057000000000002
346
+ - type: recall_at_5
347
+ value: 29.816
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 29.183999999999997
359
+ - type: map_at_10
360
+ value: 40.245
361
+ - type: map_at_100
362
+ value: 41.324
363
+ - type: map_at_1000
364
+ value: 41.402
365
+ - type: map_at_3
366
+ value: 37.395
367
+ - type: map_at_5
368
+ value: 38.964999999999996
369
+ - type: mrr_at_1
370
+ value: 33.981
371
+ - type: mrr_at_10
372
+ value: 43.471
373
+ - type: mrr_at_100
374
+ value: 44.303
375
+ - type: mrr_at_1000
376
+ value: 44.352999999999994
377
+ - type: mrr_at_3
378
+ value: 41.149
379
+ - type: mrr_at_5
380
+ value: 42.466
381
+ - type: ndcg_at_1
382
+ value: 33.981
383
+ - type: ndcg_at_10
384
+ value: 45.776
385
+ - type: ndcg_at_100
386
+ value: 50.441
387
+ - type: ndcg_at_1000
388
+ value: 52.16
389
+ - type: ndcg_at_3
390
+ value: 40.756
391
+ - type: ndcg_at_5
392
+ value: 43.132
393
+ - type: precision_at_1
394
+ value: 33.981
395
+ - type: precision_at_10
396
+ value: 7.617999999999999
397
+ - type: precision_at_100
398
+ value: 1.083
399
+ - type: precision_at_1000
400
+ value: 0.129
401
+ - type: precision_at_3
402
+ value: 18.558
403
+ - type: precision_at_5
404
+ value: 12.915
405
+ - type: recall_at_1
406
+ value: 29.183999999999997
407
+ - type: recall_at_10
408
+ value: 59.114
409
+ - type: recall_at_100
410
+ value: 79.549
411
+ - type: recall_at_1000
412
+ value: 91.925
413
+ - type: recall_at_3
414
+ value: 45.551
415
+ - type: recall_at_5
416
+ value: 51.38399999999999
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 20.286
428
+ - type: map_at_10
429
+ value: 27.143
430
+ - type: map_at_100
431
+ value: 28.107
432
+ - type: map_at_1000
433
+ value: 28.212
434
+ - type: map_at_3
435
+ value: 25.149
436
+ - type: map_at_5
437
+ value: 26.179999999999996
438
+ - type: mrr_at_1
439
+ value: 22.034000000000002
440
+ - type: mrr_at_10
441
+ value: 28.875
442
+ - type: mrr_at_100
443
+ value: 29.785
444
+ - type: mrr_at_1000
445
+ value: 29.876
446
+ - type: mrr_at_3
447
+ value: 27.023999999999997
448
+ - type: mrr_at_5
449
+ value: 28.058
450
+ - type: ndcg_at_1
451
+ value: 22.034000000000002
452
+ - type: ndcg_at_10
453
+ value: 31.148999999999997
454
+ - type: ndcg_at_100
455
+ value: 35.936
456
+ - type: ndcg_at_1000
457
+ value: 38.682
458
+ - type: ndcg_at_3
459
+ value: 27.230999999999998
460
+ - type: ndcg_at_5
461
+ value: 29.034
462
+ - type: precision_at_1
463
+ value: 22.034000000000002
464
+ - type: precision_at_10
465
+ value: 4.836
466
+ - type: precision_at_100
467
+ value: 0.754
468
+ - type: precision_at_1000
469
+ value: 0.10300000000000001
470
+ - type: precision_at_3
471
+ value: 11.562999999999999
472
+ - type: precision_at_5
473
+ value: 8.068
474
+ - type: recall_at_1
475
+ value: 20.286
476
+ - type: recall_at_10
477
+ value: 41.827999999999996
478
+ - type: recall_at_100
479
+ value: 63.922000000000004
480
+ - type: recall_at_1000
481
+ value: 84.639
482
+ - type: recall_at_3
483
+ value: 31.227
484
+ - type: recall_at_5
485
+ value: 35.546
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 13.488
497
+ - type: map_at_10
498
+ value: 18.595
499
+ - type: map_at_100
500
+ value: 19.783
501
+ - type: map_at_1000
502
+ value: 19.918
503
+ - type: map_at_3
504
+ value: 16.274
505
+ - type: map_at_5
506
+ value: 17.558
507
+ - type: mrr_at_1
508
+ value: 16.791
509
+ - type: mrr_at_10
510
+ value: 22.53
511
+ - type: mrr_at_100
512
+ value: 23.651
513
+ - type: mrr_at_1000
514
+ value: 23.738999999999997
515
+ - type: mrr_at_3
516
+ value: 20.232
517
+ - type: mrr_at_5
518
+ value: 21.644
519
+ - type: ndcg_at_1
520
+ value: 16.791
521
+ - type: ndcg_at_10
522
+ value: 22.672
523
+ - type: ndcg_at_100
524
+ value: 28.663
525
+ - type: ndcg_at_1000
526
+ value: 31.954
527
+ - type: ndcg_at_3
528
+ value: 18.372
529
+ - type: ndcg_at_5
530
+ value: 20.47
531
+ - type: precision_at_1
532
+ value: 16.791
533
+ - type: precision_at_10
534
+ value: 4.2540000000000004
535
+ - type: precision_at_100
536
+ value: 0.8370000000000001
537
+ - type: precision_at_1000
538
+ value: 0.125
539
+ - type: precision_at_3
540
+ value: 8.706
541
+ - type: precision_at_5
542
+ value: 6.666999999999999
543
+ - type: recall_at_1
544
+ value: 13.488
545
+ - type: recall_at_10
546
+ value: 31.451
547
+ - type: recall_at_100
548
+ value: 58.085
549
+ - type: recall_at_1000
550
+ value: 81.792
551
+ - type: recall_at_3
552
+ value: 19.811
553
+ - type: recall_at_5
554
+ value: 24.973
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 21.436
566
+ - type: map_at_10
567
+ value: 29.105999999999998
568
+ - type: map_at_100
569
+ value: 30.442000000000004
570
+ - type: map_at_1000
571
+ value: 30.567
572
+ - type: map_at_3
573
+ value: 26.430999999999997
574
+ - type: map_at_5
575
+ value: 27.866000000000003
576
+ - type: mrr_at_1
577
+ value: 26.083000000000002
578
+ - type: mrr_at_10
579
+ value: 33.975
580
+ - type: mrr_at_100
581
+ value: 35.014
582
+ - type: mrr_at_1000
583
+ value: 35.07
584
+ - type: mrr_at_3
585
+ value: 31.649
586
+ - type: mrr_at_5
587
+ value: 32.944
588
+ - type: ndcg_at_1
589
+ value: 26.083000000000002
590
+ - type: ndcg_at_10
591
+ value: 34.229
592
+ - type: ndcg_at_100
593
+ value: 40.439
594
+ - type: ndcg_at_1000
595
+ value: 43.081
596
+ - type: ndcg_at_3
597
+ value: 29.64
598
+ - type: ndcg_at_5
599
+ value: 31.704
600
+ - type: precision_at_1
601
+ value: 26.083000000000002
602
+ - type: precision_at_10
603
+ value: 6.246
604
+ - type: precision_at_100
605
+ value: 1.1199999999999999
606
+ - type: precision_at_1000
607
+ value: 0.155
608
+ - type: precision_at_3
609
+ value: 13.858999999999998
610
+ - type: precision_at_5
611
+ value: 10.01
612
+ - type: recall_at_1
613
+ value: 21.436
614
+ - type: recall_at_10
615
+ value: 44.938
616
+ - type: recall_at_100
617
+ value: 72.029
618
+ - type: recall_at_1000
619
+ value: 90.009
620
+ - type: recall_at_3
621
+ value: 31.954
622
+ - type: recall_at_5
623
+ value: 37.303
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 18.217
635
+ - type: map_at_10
636
+ value: 25.16
637
+ - type: map_at_100
638
+ value: 26.490000000000002
639
+ - type: map_at_1000
640
+ value: 26.619
641
+ - type: map_at_3
642
+ value: 22.926
643
+ - type: map_at_5
644
+ value: 24.251
645
+ - type: mrr_at_1
646
+ value: 22.831000000000003
647
+ - type: mrr_at_10
648
+ value: 30.009000000000004
649
+ - type: mrr_at_100
650
+ value: 31.045
651
+ - type: mrr_at_1000
652
+ value: 31.122
653
+ - type: mrr_at_3
654
+ value: 28.025
655
+ - type: mrr_at_5
656
+ value: 29.07
657
+ - type: ndcg_at_1
658
+ value: 22.831000000000003
659
+ - type: ndcg_at_10
660
+ value: 29.664
661
+ - type: ndcg_at_100
662
+ value: 35.900999999999996
663
+ - type: ndcg_at_1000
664
+ value: 38.932
665
+ - type: ndcg_at_3
666
+ value: 26.051000000000002
667
+ - type: ndcg_at_5
668
+ value: 27.741
669
+ - type: precision_at_1
670
+ value: 22.831000000000003
671
+ - type: precision_at_10
672
+ value: 5.479
673
+ - type: precision_at_100
674
+ value: 1.027
675
+ - type: precision_at_1000
676
+ value: 0.146
677
+ - type: precision_at_3
678
+ value: 12.481
679
+ - type: precision_at_5
680
+ value: 8.973
681
+ - type: recall_at_1
682
+ value: 18.217
683
+ - type: recall_at_10
684
+ value: 38.336
685
+ - type: recall_at_100
686
+ value: 65.854
687
+ - type: recall_at_1000
688
+ value: 87.498
689
+ - type: recall_at_3
690
+ value: 28.158
691
+ - type: recall_at_5
692
+ value: 32.841
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 19.100666666666665
704
+ - type: map_at_10
705
+ value: 26.22883333333333
706
+ - type: map_at_100
707
+ value: 27.34241666666667
708
+ - type: map_at_1000
709
+ value: 27.468416666666666
710
+ - type: map_at_3
711
+ value: 23.953916666666668
712
+ - type: map_at_5
713
+ value: 25.20125
714
+ - type: mrr_at_1
715
+ value: 22.729249999999997
716
+ - type: mrr_at_10
717
+ value: 29.86491666666667
718
+ - type: mrr_at_100
719
+ value: 30.76925
720
+ - type: mrr_at_1000
721
+ value: 30.846333333333337
722
+ - type: mrr_at_3
723
+ value: 27.733999999999998
724
+ - type: mrr_at_5
725
+ value: 28.94058333333333
726
+ - type: ndcg_at_1
727
+ value: 22.729249999999997
728
+ - type: ndcg_at_10
729
+ value: 30.708250000000003
730
+ - type: ndcg_at_100
731
+ value: 35.89083333333333
732
+ - type: ndcg_at_1000
733
+ value: 38.75891666666666
734
+ - type: ndcg_at_3
735
+ value: 26.661083333333334
736
+ - type: ndcg_at_5
737
+ value: 28.54
738
+ - type: precision_at_1
739
+ value: 22.729249999999997
740
+ - type: precision_at_10
741
+ value: 5.433833333333333
742
+ - type: precision_at_100
743
+ value: 0.9486666666666665
744
+ - type: precision_at_1000
745
+ value: 0.13808333333333334
746
+ - type: precision_at_3
747
+ value: 12.292166666666668
748
+ - type: precision_at_5
749
+ value: 8.825
750
+ - type: recall_at_1
751
+ value: 19.100666666666665
752
+ - type: recall_at_10
753
+ value: 40.54208333333334
754
+ - type: recall_at_100
755
+ value: 63.67975
756
+ - type: recall_at_1000
757
+ value: 84.13574999999999
758
+ - type: recall_at_3
759
+ value: 29.311000000000003
760
+ - type: recall_at_5
761
+ value: 34.1105
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 17.762
773
+ - type: map_at_10
774
+ value: 23.905
775
+ - type: map_at_100
776
+ value: 24.663
777
+ - type: map_at_1000
778
+ value: 24.765
779
+ - type: map_at_3
780
+ value: 22.032
781
+ - type: map_at_5
782
+ value: 23.025000000000002
783
+ - type: mrr_at_1
784
+ value: 20.244999999999997
785
+ - type: mrr_at_10
786
+ value: 26.162999999999997
787
+ - type: mrr_at_100
788
+ value: 26.907999999999998
789
+ - type: mrr_at_1000
790
+ value: 26.987
791
+ - type: mrr_at_3
792
+ value: 24.361
793
+ - type: mrr_at_5
794
+ value: 25.326999999999998
795
+ - type: ndcg_at_1
796
+ value: 20.244999999999997
797
+ - type: ndcg_at_10
798
+ value: 27.577
799
+ - type: ndcg_at_100
800
+ value: 31.473000000000003
801
+ - type: ndcg_at_1000
802
+ value: 34.217999999999996
803
+ - type: ndcg_at_3
804
+ value: 24.092
805
+ - type: ndcg_at_5
806
+ value: 25.657000000000004
807
+ - type: precision_at_1
808
+ value: 20.244999999999997
809
+ - type: precision_at_10
810
+ value: 4.433
811
+ - type: precision_at_100
812
+ value: 0.692
813
+ - type: precision_at_1000
814
+ value: 0.099
815
+ - type: precision_at_3
816
+ value: 10.634
817
+ - type: precision_at_5
818
+ value: 7.362
819
+ - type: recall_at_1
820
+ value: 17.762
821
+ - type: recall_at_10
822
+ value: 36.661
823
+ - type: recall_at_100
824
+ value: 54.581999999999994
825
+ - type: recall_at_1000
826
+ value: 75.28099999999999
827
+ - type: recall_at_3
828
+ value: 27.084999999999997
829
+ - type: recall_at_5
830
+ value: 31.064999999999998
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 12.998000000000001
842
+ - type: map_at_10
843
+ value: 18.926000000000002
844
+ - type: map_at_100
845
+ value: 19.836000000000002
846
+ - type: map_at_1000
847
+ value: 19.96
848
+ - type: map_at_3
849
+ value: 16.932
850
+ - type: map_at_5
851
+ value: 17.963
852
+ - type: mrr_at_1
853
+ value: 15.692
854
+ - type: mrr_at_10
855
+ value: 22.206
856
+ - type: mrr_at_100
857
+ value: 23.021
858
+ - type: mrr_at_1000
859
+ value: 23.108999999999998
860
+ - type: mrr_at_3
861
+ value: 20.114
862
+ - type: mrr_at_5
863
+ value: 21.241
864
+ - type: ndcg_at_1
865
+ value: 15.692
866
+ - type: ndcg_at_10
867
+ value: 22.997999999999998
868
+ - type: ndcg_at_100
869
+ value: 27.541
870
+ - type: ndcg_at_1000
871
+ value: 30.758000000000003
872
+ - type: ndcg_at_3
873
+ value: 19.117
874
+ - type: ndcg_at_5
875
+ value: 20.778
876
+ - type: precision_at_1
877
+ value: 15.692
878
+ - type: precision_at_10
879
+ value: 4.277
880
+ - type: precision_at_100
881
+ value: 0.774
882
+ - type: precision_at_1000
883
+ value: 0.122
884
+ - type: precision_at_3
885
+ value: 9.027000000000001
886
+ - type: precision_at_5
887
+ value: 6.641
888
+ - type: recall_at_1
889
+ value: 12.998000000000001
890
+ - type: recall_at_10
891
+ value: 32.135999999999996
892
+ - type: recall_at_100
893
+ value: 52.937
894
+ - type: recall_at_1000
895
+ value: 76.348
896
+ - type: recall_at_3
897
+ value: 21.292
898
+ - type: recall_at_5
899
+ value: 25.439
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 20.219
911
+ - type: map_at_10
912
+ value: 27.306
913
+ - type: map_at_100
914
+ value: 28.337
915
+ - type: map_at_1000
916
+ value: 28.459
917
+ - type: map_at_3
918
+ value: 25.423000000000002
919
+ - type: map_at_5
920
+ value: 26.375999999999998
921
+ - type: mrr_at_1
922
+ value: 23.787
923
+ - type: mrr_at_10
924
+ value: 30.977
925
+ - type: mrr_at_100
926
+ value: 31.85
927
+ - type: mrr_at_1000
928
+ value: 31.939
929
+ - type: mrr_at_3
930
+ value: 29.073
931
+ - type: mrr_at_5
932
+ value: 30.095
933
+ - type: ndcg_at_1
934
+ value: 23.787
935
+ - type: ndcg_at_10
936
+ value: 31.615
937
+ - type: ndcg_at_100
938
+ value: 36.641
939
+ - type: ndcg_at_1000
940
+ value: 39.707
941
+ - type: ndcg_at_3
942
+ value: 27.994000000000003
943
+ - type: ndcg_at_5
944
+ value: 29.508000000000003
945
+ - type: precision_at_1
946
+ value: 23.787
947
+ - type: precision_at_10
948
+ value: 5.271
949
+ - type: precision_at_100
950
+ value: 0.865
951
+ - type: precision_at_1000
952
+ value: 0.125
953
+ - type: precision_at_3
954
+ value: 12.748999999999999
955
+ - type: precision_at_5
956
+ value: 8.806
957
+ - type: recall_at_1
958
+ value: 20.219
959
+ - type: recall_at_10
960
+ value: 41.108
961
+ - type: recall_at_100
962
+ value: 63.596
963
+ - type: recall_at_1000
964
+ value: 85.54899999999999
965
+ - type: recall_at_3
966
+ value: 31.129
967
+ - type: recall_at_5
968
+ value: 34.845
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 19.949
980
+ - type: map_at_10
981
+ value: 26.629
982
+ - type: map_at_100
983
+ value: 28.006999999999998
984
+ - type: map_at_1000
985
+ value: 28.221
986
+ - type: map_at_3
987
+ value: 24.099999999999998
988
+ - type: map_at_5
989
+ value: 25.487
990
+ - type: mrr_at_1
991
+ value: 24.111
992
+ - type: mrr_at_10
993
+ value: 30.592000000000002
994
+ - type: mrr_at_100
995
+ value: 31.448999999999998
996
+ - type: mrr_at_1000
997
+ value: 31.538
998
+ - type: mrr_at_3
999
+ value: 28.128999999999998
1000
+ - type: mrr_at_5
1001
+ value: 29.503
1002
+ - type: ndcg_at_1
1003
+ value: 24.111
1004
+ - type: ndcg_at_10
1005
+ value: 31.373
1006
+ - type: ndcg_at_100
1007
+ value: 36.897999999999996
1008
+ - type: ndcg_at_1000
1009
+ value: 40.288000000000004
1010
+ - type: ndcg_at_3
1011
+ value: 26.895000000000003
1012
+ - type: ndcg_at_5
1013
+ value: 29.009
1014
+ - type: precision_at_1
1015
+ value: 24.111
1016
+ - type: precision_at_10
1017
+ value: 6.067
1018
+ - type: precision_at_100
1019
+ value: 1.269
1020
+ - type: precision_at_1000
1021
+ value: 0.22
1022
+ - type: precision_at_3
1023
+ value: 12.385
1024
+ - type: precision_at_5
1025
+ value: 9.249
1026
+ - type: recall_at_1
1027
+ value: 19.949
1028
+ - type: recall_at_10
1029
+ value: 40.394000000000005
1030
+ - type: recall_at_100
1031
+ value: 65.812
1032
+ - type: recall_at_1000
1033
+ value: 88.247
1034
+ - type: recall_at_3
1035
+ value: 28.116000000000003
1036
+ - type: recall_at_5
1037
+ value: 33.4
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 13.905999999999999
1049
+ - type: map_at_10
1050
+ value: 20.523
1051
+ - type: map_at_100
1052
+ value: 21.547
1053
+ - type: map_at_1000
1054
+ value: 21.665
1055
+ - type: map_at_3
1056
+ value: 18.182000000000002
1057
+ - type: map_at_5
1058
+ value: 19.661
1059
+ - type: mrr_at_1
1060
+ value: 14.972
1061
+ - type: mrr_at_10
1062
+ value: 22.092
1063
+ - type: mrr_at_100
1064
+ value: 23.055999999999997
1065
+ - type: mrr_at_1000
1066
+ value: 23.150000000000002
1067
+ - type: mrr_at_3
1068
+ value: 19.778000000000002
1069
+ - type: mrr_at_5
1070
+ value: 21.229
1071
+ - type: ndcg_at_1
1072
+ value: 14.972
1073
+ - type: ndcg_at_10
1074
+ value: 24.547
1075
+ - type: ndcg_at_100
1076
+ value: 29.948999999999998
1077
+ - type: ndcg_at_1000
1078
+ value: 33.084
1079
+ - type: ndcg_at_3
1080
+ value: 20.036
1081
+ - type: ndcg_at_5
1082
+ value: 22.567
1083
+ - type: precision_at_1
1084
+ value: 14.972
1085
+ - type: precision_at_10
1086
+ value: 4.067
1087
+ - type: precision_at_100
1088
+ value: 0.743
1089
+ - type: precision_at_1000
1090
+ value: 0.11100000000000002
1091
+ - type: precision_at_3
1092
+ value: 8.811
1093
+ - type: precision_at_5
1094
+ value: 6.654
1095
+ - type: recall_at_1
1096
+ value: 13.905999999999999
1097
+ - type: recall_at_10
1098
+ value: 35.493
1099
+ - type: recall_at_100
1100
+ value: 60.67399999999999
1101
+ - type: recall_at_1000
1102
+ value: 84.371
1103
+ - type: recall_at_3
1104
+ value: 23.555
1105
+ - type: recall_at_5
1106
+ value: 29.729
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 7.529
1118
+ - type: map_at_10
1119
+ value: 12.794
1120
+ - type: map_at_100
1121
+ value: 14.315
1122
+ - type: map_at_1000
1123
+ value: 14.523
1124
+ - type: map_at_3
1125
+ value: 10.367999999999999
1126
+ - type: map_at_5
1127
+ value: 11.546
1128
+ - type: mrr_at_1
1129
+ value: 16.872999999999998
1130
+ - type: mrr_at_10
1131
+ value: 25.709
1132
+ - type: mrr_at_100
1133
+ value: 26.907999999999998
1134
+ - type: mrr_at_1000
1135
+ value: 26.962000000000003
1136
+ - type: mrr_at_3
1137
+ value: 22.486
1138
+ - type: mrr_at_5
1139
+ value: 24.245
1140
+ - type: ndcg_at_1
1141
+ value: 16.872999999999998
1142
+ - type: ndcg_at_10
1143
+ value: 19.005
1144
+ - type: ndcg_at_100
1145
+ value: 25.990999999999996
1146
+ - type: ndcg_at_1000
1147
+ value: 29.955
1148
+ - type: ndcg_at_3
1149
+ value: 14.573
1150
+ - type: ndcg_at_5
1151
+ value: 16.118
1152
+ - type: precision_at_1
1153
+ value: 16.872999999999998
1154
+ - type: precision_at_10
1155
+ value: 6.235
1156
+ - type: precision_at_100
1157
+ value: 1.374
1158
+ - type: precision_at_1000
1159
+ value: 0.21
1160
+ - type: precision_at_3
1161
+ value: 10.793
1162
+ - type: precision_at_5
1163
+ value: 8.73
1164
+ - type: recall_at_1
1165
+ value: 7.529
1166
+ - type: recall_at_10
1167
+ value: 24.007
1168
+ - type: recall_at_100
1169
+ value: 48.742000000000004
1170
+ - type: recall_at_1000
1171
+ value: 71.35000000000001
1172
+ - type: recall_at_3
1173
+ value: 13.467
1174
+ - type: recall_at_5
1175
+ value: 17.502000000000002
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 5.614
1187
+ - type: map_at_10
1188
+ value: 11.42
1189
+ - type: map_at_100
1190
+ value: 15.873000000000001
1191
+ - type: map_at_1000
1192
+ value: 17.021
1193
+ - type: map_at_3
1194
+ value: 8.495
1195
+ - type: map_at_5
1196
+ value: 9.790000000000001
1197
+ - type: mrr_at_1
1198
+ value: 42.0
1199
+ - type: mrr_at_10
1200
+ value: 52.477
1201
+ - type: mrr_at_100
1202
+ value: 53.095000000000006
1203
+ - type: mrr_at_1000
1204
+ value: 53.135
1205
+ - type: mrr_at_3
1206
+ value: 49.833
1207
+ - type: mrr_at_5
1208
+ value: 51.183
1209
+ - type: ndcg_at_1
1210
+ value: 31.374999999999996
1211
+ - type: ndcg_at_10
1212
+ value: 25.27
1213
+ - type: ndcg_at_100
1214
+ value: 29.709999999999997
1215
+ - type: ndcg_at_1000
1216
+ value: 36.975
1217
+ - type: ndcg_at_3
1218
+ value: 27.688000000000002
1219
+ - type: ndcg_at_5
1220
+ value: 25.987
1221
+ - type: precision_at_1
1222
+ value: 42.0
1223
+ - type: precision_at_10
1224
+ value: 21.2
1225
+ - type: precision_at_100
1226
+ value: 7.053
1227
+ - type: precision_at_1000
1228
+ value: 1.512
1229
+ - type: precision_at_3
1230
+ value: 32.333
1231
+ - type: precision_at_5
1232
+ value: 26.6
1233
+ - type: recall_at_1
1234
+ value: 5.614
1235
+ - type: recall_at_10
1236
+ value: 16.112000000000002
1237
+ - type: recall_at_100
1238
+ value: 36.165000000000006
1239
+ - type: recall_at_1000
1240
+ value: 60.362
1241
+ - type: recall_at_3
1242
+ value: 9.761000000000001
1243
+ - type: recall_at_5
1244
+ value: 12.279
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 40.085
1256
+ - type: f1
1257
+ value: 35.53934111316537
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 34.185
1269
+ - type: map_at_10
1270
+ value: 44.491
1271
+ - type: map_at_100
1272
+ value: 45.204
1273
+ - type: map_at_1000
1274
+ value: 45.254
1275
+ - type: map_at_3
1276
+ value: 42.006
1277
+ - type: map_at_5
1278
+ value: 43.516
1279
+ - type: mrr_at_1
1280
+ value: 37.024
1281
+ - type: mrr_at_10
1282
+ value: 47.524
1283
+ - type: mrr_at_100
1284
+ value: 48.185
1285
+ - type: mrr_at_1000
1286
+ value: 48.227
1287
+ - type: mrr_at_3
1288
+ value: 45.086999999999996
1289
+ - type: mrr_at_5
1290
+ value: 46.575
1291
+ - type: ndcg_at_1
1292
+ value: 37.024
1293
+ - type: ndcg_at_10
1294
+ value: 50.126000000000005
1295
+ - type: ndcg_at_100
1296
+ value: 53.577
1297
+ - type: ndcg_at_1000
1298
+ value: 54.906
1299
+ - type: ndcg_at_3
1300
+ value: 45.25
1301
+ - type: ndcg_at_5
1302
+ value: 47.842
1303
+ - type: precision_at_1
1304
+ value: 37.024
1305
+ - type: precision_at_10
1306
+ value: 7.132
1307
+ - type: precision_at_100
1308
+ value: 0.898
1309
+ - type: precision_at_1000
1310
+ value: 0.10300000000000001
1311
+ - type: precision_at_3
1312
+ value: 18.767
1313
+ - type: precision_at_5
1314
+ value: 12.676000000000002
1315
+ - type: recall_at_1
1316
+ value: 34.185
1317
+ - type: recall_at_10
1318
+ value: 64.703
1319
+ - type: recall_at_100
1320
+ value: 80.58
1321
+ - type: recall_at_1000
1322
+ value: 90.742
1323
+ - type: recall_at_3
1324
+ value: 51.483000000000004
1325
+ - type: recall_at_5
1326
+ value: 57.775
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 9.358
1338
+ - type: map_at_10
1339
+ value: 16.391
1340
+ - type: map_at_100
1341
+ value: 17.698
1342
+ - type: map_at_1000
1343
+ value: 17.912
1344
+ - type: map_at_3
1345
+ value: 13.831
1346
+ - type: map_at_5
1347
+ value: 15.187000000000001
1348
+ - type: mrr_at_1
1349
+ value: 18.673000000000002
1350
+ - type: mrr_at_10
1351
+ value: 26.907999999999998
1352
+ - type: mrr_at_100
1353
+ value: 27.842
1354
+ - type: mrr_at_1000
1355
+ value: 27.933000000000003
1356
+ - type: mrr_at_3
1357
+ value: 24.486
1358
+ - type: mrr_at_5
1359
+ value: 25.766
1360
+ - type: ndcg_at_1
1361
+ value: 18.673000000000002
1362
+ - type: ndcg_at_10
1363
+ value: 22.137
1364
+ - type: ndcg_at_100
1365
+ value: 28.126
1366
+ - type: ndcg_at_1000
1367
+ value: 32.489000000000004
1368
+ - type: ndcg_at_3
1369
+ value: 18.723
1370
+ - type: ndcg_at_5
1371
+ value: 19.858
1372
+ - type: precision_at_1
1373
+ value: 18.673000000000002
1374
+ - type: precision_at_10
1375
+ value: 6.389
1376
+ - type: precision_at_100
1377
+ value: 1.262
1378
+ - type: precision_at_1000
1379
+ value: 0.202
1380
+ - type: precision_at_3
1381
+ value: 12.757
1382
+ - type: precision_at_5
1383
+ value: 9.753
1384
+ - type: recall_at_1
1385
+ value: 9.358
1386
+ - type: recall_at_10
1387
+ value: 28.605000000000004
1388
+ - type: recall_at_100
1389
+ value: 51.713
1390
+ - type: recall_at_1000
1391
+ value: 78.408
1392
+ - type: recall_at_3
1393
+ value: 17.674
1394
+ - type: recall_at_5
1395
+ value: 21.97
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 22.997999999999998
1407
+ - type: map_at_10
1408
+ value: 32.957
1409
+ - type: map_at_100
1410
+ value: 33.972
1411
+ - type: map_at_1000
1412
+ value: 34.072
1413
+ - type: map_at_3
1414
+ value: 30.44
1415
+ - type: map_at_5
1416
+ value: 31.869999999999997
1417
+ - type: mrr_at_1
1418
+ value: 45.995999999999995
1419
+ - type: mrr_at_10
1420
+ value: 54.473000000000006
1421
+ - type: mrr_at_100
1422
+ value: 55.103
1423
+ - type: mrr_at_1000
1424
+ value: 55.139
1425
+ - type: mrr_at_3
1426
+ value: 52.349999999999994
1427
+ - type: mrr_at_5
1428
+ value: 53.61900000000001
1429
+ - type: ndcg_at_1
1430
+ value: 45.995999999999995
1431
+ - type: ndcg_at_10
1432
+ value: 41.333
1433
+ - type: ndcg_at_100
1434
+ value: 45.635999999999996
1435
+ - type: ndcg_at_1000
1436
+ value: 47.847
1437
+ - type: ndcg_at_3
1438
+ value: 36.825
1439
+ - type: ndcg_at_5
1440
+ value: 39.099000000000004
1441
+ - type: precision_at_1
1442
+ value: 45.995999999999995
1443
+ - type: precision_at_10
1444
+ value: 9.020999999999999
1445
+ - type: precision_at_100
1446
+ value: 1.244
1447
+ - type: precision_at_1000
1448
+ value: 0.154
1449
+ - type: precision_at_3
1450
+ value: 23.34
1451
+ - type: precision_at_5
1452
+ value: 15.8
1453
+ - type: recall_at_1
1454
+ value: 22.997999999999998
1455
+ - type: recall_at_10
1456
+ value: 45.105000000000004
1457
+ - type: recall_at_100
1458
+ value: 62.188
1459
+ - type: recall_at_1000
1460
+ value: 76.907
1461
+ - type: recall_at_3
1462
+ value: 35.010000000000005
1463
+ - type: recall_at_5
1464
+ value: 39.5
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 80.0944
1476
+ - type: ap
1477
+ value: 74.43301569395831
1478
+ - type: f1
1479
+ value: 80.04407647044388
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 10.171
1491
+ - type: map_at_10
1492
+ value: 17.558
1493
+ - type: map_at_100
1494
+ value: 18.694
1495
+ - type: map_at_1000
1496
+ value: 18.787000000000003
1497
+ - type: map_at_3
1498
+ value: 14.826
1499
+ - type: map_at_5
1500
+ value: 16.249
1501
+ - type: mrr_at_1
1502
+ value: 10.473
1503
+ - type: mrr_at_10
1504
+ value: 17.967
1505
+ - type: mrr_at_100
1506
+ value: 19.089
1507
+ - type: mrr_at_1000
1508
+ value: 19.177
1509
+ - type: mrr_at_3
1510
+ value: 15.222
1511
+ - type: mrr_at_5
1512
+ value: 16.655
1513
+ - type: ndcg_at_1
1514
+ value: 10.473
1515
+ - type: ndcg_at_10
1516
+ value: 22.148
1517
+ - type: ndcg_at_100
1518
+ value: 28.028
1519
+ - type: ndcg_at_1000
1520
+ value: 30.659
1521
+ - type: ndcg_at_3
1522
+ value: 16.474
1523
+ - type: ndcg_at_5
1524
+ value: 19.017
1525
+ - type: precision_at_1
1526
+ value: 10.473
1527
+ - type: precision_at_10
1528
+ value: 3.7969999999999997
1529
+ - type: precision_at_100
1530
+ value: 0.6779999999999999
1531
+ - type: precision_at_1000
1532
+ value: 0.09
1533
+ - type: precision_at_3
1534
+ value: 7.187
1535
+ - type: precision_at_5
1536
+ value: 5.599
1537
+ - type: recall_at_1
1538
+ value: 10.171
1539
+ - type: recall_at_10
1540
+ value: 36.459
1541
+ - type: recall_at_100
1542
+ value: 64.512
1543
+ - type: recall_at_1000
1544
+ value: 85.27900000000001
1545
+ - type: recall_at_3
1546
+ value: 20.868000000000002
1547
+ - type: recall_at_5
1548
+ value: 26.933
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 90.35795713634292
1560
+ - type: f1
1561
+ value: 89.72064544336776
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 66.4546283629731
1573
+ - type: f1
1574
+ value: 49.487271168215095
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 67.58238063214527
1586
+ - type: f1
1587
+ value: 65.54281371907213
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 73.47343644922664
1599
+ - type: f1
1600
+ value: 72.80522894672785
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 32.53600917473176
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 28.04699774280647
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.984352865575797
1634
+ - type: mrr
1635
+ value: 32.02736001972659
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 4.666
1647
+ - type: map_at_10
1648
+ value: 10.066
1649
+ - type: map_at_100
1650
+ value: 12.794
1651
+ - type: map_at_1000
1652
+ value: 14.184
1653
+ - type: map_at_3
1654
+ value: 7.622
1655
+ - type: map_at_5
1656
+ value: 8.587
1657
+ - type: mrr_at_1
1658
+ value: 39.318999999999996
1659
+ - type: mrr_at_10
1660
+ value: 47.678
1661
+ - type: mrr_at_100
1662
+ value: 48.355
1663
+ - type: mrr_at_1000
1664
+ value: 48.400999999999996
1665
+ - type: mrr_at_3
1666
+ value: 45.82
1667
+ - type: mrr_at_5
1668
+ value: 46.656
1669
+ - type: ndcg_at_1
1670
+ value: 37.926
1671
+ - type: ndcg_at_10
1672
+ value: 29.049999999999997
1673
+ - type: ndcg_at_100
1674
+ value: 26.826
1675
+ - type: ndcg_at_1000
1676
+ value: 35.841
1677
+ - type: ndcg_at_3
1678
+ value: 33.513
1679
+ - type: ndcg_at_5
1680
+ value: 31.227
1681
+ - type: precision_at_1
1682
+ value: 39.318999999999996
1683
+ - type: precision_at_10
1684
+ value: 21.424000000000003
1685
+ - type: precision_at_100
1686
+ value: 7.231999999999999
1687
+ - type: precision_at_1000
1688
+ value: 2.012
1689
+ - type: precision_at_3
1690
+ value: 30.857
1691
+ - type: precision_at_5
1692
+ value: 26.378
1693
+ - type: recall_at_1
1694
+ value: 4.666
1695
+ - type: recall_at_10
1696
+ value: 13.898
1697
+ - type: recall_at_100
1698
+ value: 26.983
1699
+ - type: recall_at_1000
1700
+ value: 59.485
1701
+ - type: recall_at_3
1702
+ value: 8.953
1703
+ - type: recall_at_5
1704
+ value: 10.496
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 9.26
1716
+ - type: map_at_10
1717
+ value: 17.907999999999998
1718
+ - type: map_at_100
1719
+ value: 19.245
1720
+ - type: map_at_1000
1721
+ value: 19.339000000000002
1722
+ - type: map_at_3
1723
+ value: 14.634
1724
+ - type: map_at_5
1725
+ value: 16.386
1726
+ - type: mrr_at_1
1727
+ value: 10.574
1728
+ - type: mrr_at_10
1729
+ value: 19.438
1730
+ - type: mrr_at_100
1731
+ value: 20.638
1732
+ - type: mrr_at_1000
1733
+ value: 20.715
1734
+ - type: mrr_at_3
1735
+ value: 16.276
1736
+ - type: mrr_at_5
1737
+ value: 17.971999999999998
1738
+ - type: ndcg_at_1
1739
+ value: 10.574
1740
+ - type: ndcg_at_10
1741
+ value: 23.451
1742
+ - type: ndcg_at_100
1743
+ value: 29.982
1744
+ - type: ndcg_at_1000
1745
+ value: 32.449
1746
+ - type: ndcg_at_3
1747
+ value: 16.817
1748
+ - type: ndcg_at_5
1749
+ value: 19.867
1750
+ - type: precision_at_1
1751
+ value: 10.574
1752
+ - type: precision_at_10
1753
+ value: 4.609
1754
+ - type: precision_at_100
1755
+ value: 0.8330000000000001
1756
+ - type: precision_at_1000
1757
+ value: 0.107
1758
+ - type: precision_at_3
1759
+ value: 8.266
1760
+ - type: precision_at_5
1761
+ value: 6.6739999999999995
1762
+ - type: recall_at_1
1763
+ value: 9.26
1764
+ - type: recall_at_10
1765
+ value: 39.224
1766
+ - type: recall_at_100
1767
+ value: 69.107
1768
+ - type: recall_at_1000
1769
+ value: 87.908
1770
+ - type: recall_at_3
1771
+ value: 21.490000000000002
1772
+ - type: recall_at_5
1773
+ value: 28.560999999999996
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 65.655
1785
+ - type: map_at_10
1786
+ value: 79.199
1787
+ - type: map_at_100
1788
+ value: 79.937
1789
+ - type: map_at_1000
1790
+ value: 79.964
1791
+ - type: map_at_3
1792
+ value: 76.19399999999999
1793
+ - type: map_at_5
1794
+ value: 78.08800000000001
1795
+ - type: mrr_at_1
1796
+ value: 75.53999999999999
1797
+ - type: mrr_at_10
1798
+ value: 82.89
1799
+ - type: mrr_at_100
1800
+ value: 83.074
1801
+ - type: mrr_at_1000
1802
+ value: 83.077
1803
+ - type: mrr_at_3
1804
+ value: 81.577
1805
+ - type: mrr_at_5
1806
+ value: 82.452
1807
+ - type: ndcg_at_1
1808
+ value: 75.53999999999999
1809
+ - type: ndcg_at_10
1810
+ value: 83.62899999999999
1811
+ - type: ndcg_at_100
1812
+ value: 85.411
1813
+ - type: ndcg_at_1000
1814
+ value: 85.646
1815
+ - type: ndcg_at_3
1816
+ value: 80.23700000000001
1817
+ - type: ndcg_at_5
1818
+ value: 82.107
1819
+ - type: precision_at_1
1820
+ value: 75.53999999999999
1821
+ - type: precision_at_10
1822
+ value: 12.695
1823
+ - type: precision_at_100
1824
+ value: 1.493
1825
+ - type: precision_at_1000
1826
+ value: 0.156
1827
+ - type: precision_at_3
1828
+ value: 34.983
1829
+ - type: precision_at_5
1830
+ value: 23.164
1831
+ - type: recall_at_1
1832
+ value: 65.655
1833
+ - type: recall_at_10
1834
+ value: 92.269
1835
+ - type: recall_at_100
1836
+ value: 98.598
1837
+ - type: recall_at_1000
1838
+ value: 99.815
1839
+ - type: recall_at_3
1840
+ value: 82.616
1841
+ - type: recall_at_5
1842
+ value: 87.75800000000001
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 43.67844919460687
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 54.32866004447611
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 3.238
1876
+ - type: map_at_10
1877
+ value: 8.539
1878
+ - type: map_at_100
1879
+ value: 10.267
1880
+ - type: map_at_1000
1881
+ value: 10.552999999999999
1882
+ - type: map_at_3
1883
+ value: 6.165
1884
+ - type: map_at_5
1885
+ value: 7.22
1886
+ - type: mrr_at_1
1887
+ value: 15.9
1888
+ - type: mrr_at_10
1889
+ value: 25.557999999999996
1890
+ - type: mrr_at_100
1891
+ value: 26.867
1892
+ - type: mrr_at_1000
1893
+ value: 26.939
1894
+ - type: mrr_at_3
1895
+ value: 22.633
1896
+ - type: mrr_at_5
1897
+ value: 24.233
1898
+ - type: ndcg_at_1
1899
+ value: 15.9
1900
+ - type: ndcg_at_10
1901
+ value: 14.954
1902
+ - type: ndcg_at_100
1903
+ value: 22.486
1904
+ - type: ndcg_at_1000
1905
+ value: 27.986
1906
+ - type: ndcg_at_3
1907
+ value: 14.069
1908
+ - type: ndcg_at_5
1909
+ value: 12.200999999999999
1910
+ - type: precision_at_1
1911
+ value: 15.9
1912
+ - type: precision_at_10
1913
+ value: 7.9399999999999995
1914
+ - type: precision_at_100
1915
+ value: 1.8929999999999998
1916
+ - type: precision_at_1000
1917
+ value: 0.32299999999999995
1918
+ - type: precision_at_3
1919
+ value: 13.5
1920
+ - type: precision_at_5
1921
+ value: 10.9
1922
+ - type: recall_at_1
1923
+ value: 3.238
1924
+ - type: recall_at_10
1925
+ value: 16.1
1926
+ - type: recall_at_100
1927
+ value: 38.427
1928
+ - type: recall_at_1000
1929
+ value: 65.498
1930
+ - type: recall_at_3
1931
+ value: 8.212
1932
+ - type: recall_at_5
1933
+ value: 11.032
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 80.7612029200118
1945
+ - type: cos_sim_spearman
1946
+ value: 74.17706899450974
1947
+ - type: euclidean_pearson
1948
+ value: 78.6240925347838
1949
+ - type: euclidean_spearman
1950
+ value: 74.22104652352341
1951
+ - type: manhattan_pearson
1952
+ value: 78.49956480878576
1953
+ - type: manhattan_spearman
1954
+ value: 74.0528957569391
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 80.0377294417705
1966
+ - type: cos_sim_spearman
1967
+ value: 72.19570903733732
1968
+ - type: euclidean_pearson
1969
+ value: 77.060604990743
1970
+ - type: euclidean_spearman
1971
+ value: 71.54251658956483
1972
+ - type: manhattan_pearson
1973
+ value: 77.28301977645965
1974
+ - type: manhattan_spearman
1975
+ value: 71.77449045278667
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 79.69841558517969
1987
+ - type: cos_sim_spearman
1988
+ value: 80.54022353649157
1989
+ - type: euclidean_pearson
1990
+ value: 80.03651743688496
1991
+ - type: euclidean_spearman
1992
+ value: 80.45116824930123
1993
+ - type: manhattan_pearson
1994
+ value: 79.89688370680031
1995
+ - type: manhattan_spearman
1996
+ value: 80.27208259746283
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 79.92235427443056
2008
+ - type: cos_sim_spearman
2009
+ value: 76.20243980748161
2010
+ - type: euclidean_pearson
2011
+ value: 79.28031963400572
2012
+ - type: euclidean_spearman
2013
+ value: 76.3568261868673
2014
+ - type: manhattan_pearson
2015
+ value: 79.24527845959733
2016
+ - type: manhattan_spearman
2017
+ value: 76.39886696744185
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 84.2762365324788
2029
+ - type: cos_sim_spearman
2030
+ value: 85.19929628214842
2031
+ - type: euclidean_pearson
2032
+ value: 84.82568872953075
2033
+ - type: euclidean_spearman
2034
+ value: 85.11039387706913
2035
+ - type: manhattan_pearson
2036
+ value: 84.72922084197847
2037
+ - type: manhattan_spearman
2038
+ value: 85.04448532444505
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 80.23256564746382
2050
+ - type: cos_sim_spearman
2051
+ value: 81.92968415429543
2052
+ - type: euclidean_pearson
2053
+ value: 81.12612888308936
2054
+ - type: euclidean_spearman
2055
+ value: 81.97396557448675
2056
+ - type: manhattan_pearson
2057
+ value: 81.15685601512081
2058
+ - type: manhattan_spearman
2059
+ value: 82.01929408689
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 85.35057935029289
2071
+ - type: cos_sim_spearman
2072
+ value: 86.60658025867397
2073
+ - type: euclidean_pearson
2074
+ value: 86.48666975508912
2075
+ - type: euclidean_spearman
2076
+ value: 86.70310223264862
2077
+ - type: manhattan_pearson
2078
+ value: 86.23959282751626
2079
+ - type: manhattan_spearman
2080
+ value: 86.48318896577922
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 63.15375299804011
2092
+ - type: cos_sim_spearman
2093
+ value: 65.4588500819246
2094
+ - type: euclidean_pearson
2095
+ value: 65.60180021985416
2096
+ - type: euclidean_spearman
2097
+ value: 65.55596512146833
2098
+ - type: manhattan_pearson
2099
+ value: 66.12421335157649
2100
+ - type: manhattan_spearman
2101
+ value: 66.05163838991123
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 81.82391915730462
2113
+ - type: cos_sim_spearman
2114
+ value: 81.93942545767499
2115
+ - type: euclidean_pearson
2116
+ value: 83.16752744889406
2117
+ - type: euclidean_spearman
2118
+ value: 82.31380947581034
2119
+ - type: manhattan_pearson
2120
+ value: 82.98915741609575
2121
+ - type: manhattan_spearman
2122
+ value: 82.16585239338073
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 77.19504204180527
2134
+ - type: mrr
2135
+ value: 92.85429983959396
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 49.528
2147
+ - type: map_at_10
2148
+ value: 57.62199999999999
2149
+ - type: map_at_100
2150
+ value: 58.544
2151
+ - type: map_at_1000
2152
+ value: 58.573
2153
+ - type: map_at_3
2154
+ value: 54.56999999999999
2155
+ - type: map_at_5
2156
+ value: 56.552
2157
+ - type: mrr_at_1
2158
+ value: 52.0
2159
+ - type: mrr_at_10
2160
+ value: 58.939
2161
+ - type: mrr_at_100
2162
+ value: 59.653
2163
+ - type: mrr_at_1000
2164
+ value: 59.68
2165
+ - type: mrr_at_3
2166
+ value: 56.389
2167
+ - type: mrr_at_5
2168
+ value: 57.989000000000004
2169
+ - type: ndcg_at_1
2170
+ value: 52.0
2171
+ - type: ndcg_at_10
2172
+ value: 61.964
2173
+ - type: ndcg_at_100
2174
+ value: 65.871
2175
+ - type: ndcg_at_1000
2176
+ value: 66.724
2177
+ - type: ndcg_at_3
2178
+ value: 56.621
2179
+ - type: ndcg_at_5
2180
+ value: 59.551
2181
+ - type: precision_at_1
2182
+ value: 52.0
2183
+ - type: precision_at_10
2184
+ value: 8.333
2185
+ - type: precision_at_100
2186
+ value: 1.04
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 21.778
2191
+ - type: precision_at_5
2192
+ value: 14.933
2193
+ - type: recall_at_1
2194
+ value: 49.528
2195
+ - type: recall_at_10
2196
+ value: 74.2
2197
+ - type: recall_at_100
2198
+ value: 91.5
2199
+ - type: recall_at_1000
2200
+ value: 98.333
2201
+ - type: recall_at_3
2202
+ value: 60.06700000000001
2203
+ - type: recall_at_5
2204
+ value: 67.133
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.81287128712871
2216
+ - type: cos_sim_ap
2217
+ value: 95.15039468118793
2218
+ - type: cos_sim_f1
2219
+ value: 90.48817312531455
2220
+ - type: cos_sim_precision
2221
+ value: 91.08409321175279
2222
+ - type: cos_sim_recall
2223
+ value: 89.9
2224
+ - type: dot_accuracy
2225
+ value: 99.78019801980199
2226
+ - type: dot_ap
2227
+ value: 93.60256835857994
2228
+ - type: dot_f1
2229
+ value: 88.73096446700508
2230
+ - type: dot_precision
2231
+ value: 90.10309278350516
2232
+ - type: dot_recall
2233
+ value: 87.4
2234
+ - type: euclidean_accuracy
2235
+ value: 99.81188118811882
2236
+ - type: euclidean_ap
2237
+ value: 95.15954231276913
2238
+ - type: euclidean_f1
2239
+ value: 90.48096192384769
2240
+ - type: euclidean_precision
2241
+ value: 90.66265060240963
2242
+ - type: euclidean_recall
2243
+ value: 90.3
2244
+ - type: manhattan_accuracy
2245
+ value: 99.81188118811882
2246
+ - type: manhattan_ap
2247
+ value: 95.17107000565468
2248
+ - type: manhattan_f1
2249
+ value: 90.5
2250
+ - type: manhattan_precision
2251
+ value: 90.5
2252
+ - type: manhattan_recall
2253
+ value: 90.5
2254
+ - type: max_accuracy
2255
+ value: 99.81287128712871
2256
+ - type: max_ap
2257
+ value: 95.17107000565468
2258
+ - type: max_f1
2259
+ value: 90.5
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 51.77488276525734
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 33.30657214418171
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 47.84571922992432
2293
+ - type: mrr
2294
+ value: 48.549107142857146
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 29.840750357585556
2306
+ - type: cos_sim_spearman
2307
+ value: 29.832953864936567
2308
+ - type: dot_pearson
2309
+ value: 30.499687946740657
2310
+ - type: dot_spearman
2311
+ value: 30.73436062481656
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.16999999999999998
2323
+ - type: map_at_10
2324
+ value: 1.014
2325
+ - type: map_at_100
2326
+ value: 5.623
2327
+ - type: map_at_1000
2328
+ value: 15.190999999999999
2329
+ - type: map_at_3
2330
+ value: 0.377
2331
+ - type: map_at_5
2332
+ value: 0.577
2333
+ - type: mrr_at_1
2334
+ value: 68.0
2335
+ - type: mrr_at_10
2336
+ value: 74.45
2337
+ - type: mrr_at_100
2338
+ value: 74.846
2339
+ - type: mrr_at_1000
2340
+ value: 74.846
2341
+ - type: mrr_at_3
2342
+ value: 71.333
2343
+ - type: mrr_at_5
2344
+ value: 73.533
2345
+ - type: ndcg_at_1
2346
+ value: 64.0
2347
+ - type: ndcg_at_10
2348
+ value: 47.52
2349
+ - type: ndcg_at_100
2350
+ value: 37.419999999999995
2351
+ - type: ndcg_at_1000
2352
+ value: 36.318
2353
+ - type: ndcg_at_3
2354
+ value: 51.13999999999999
2355
+ - type: ndcg_at_5
2356
+ value: 49.101
2357
+ - type: precision_at_1
2358
+ value: 68.0
2359
+ - type: precision_at_10
2360
+ value: 50.8
2361
+ - type: precision_at_100
2362
+ value: 39.160000000000004
2363
+ - type: precision_at_1000
2364
+ value: 16.948
2365
+ - type: precision_at_3
2366
+ value: 52.0
2367
+ - type: precision_at_5
2368
+ value: 51.6
2369
+ - type: recall_at_1
2370
+ value: 0.16999999999999998
2371
+ - type: recall_at_10
2372
+ value: 1.269
2373
+ - type: recall_at_100
2374
+ value: 8.937000000000001
2375
+ - type: recall_at_1000
2376
+ value: 35.036
2377
+ - type: recall_at_3
2378
+ value: 0.396
2379
+ - type: recall_at_5
2380
+ value: 0.6669999999999999
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 1.672
2392
+ - type: map_at_10
2393
+ value: 6.739000000000001
2394
+ - type: map_at_100
2395
+ value: 12.006
2396
+ - type: map_at_1000
2397
+ value: 13.474
2398
+ - type: map_at_3
2399
+ value: 2.617
2400
+ - type: map_at_5
2401
+ value: 4.329000000000001
2402
+ - type: mrr_at_1
2403
+ value: 20.408
2404
+ - type: mrr_at_10
2405
+ value: 30.764000000000003
2406
+ - type: mrr_at_100
2407
+ value: 32.457
2408
+ - type: mrr_at_1000
2409
+ value: 32.481
2410
+ - type: mrr_at_3
2411
+ value: 26.531
2412
+ - type: mrr_at_5
2413
+ value: 28.877999999999997
2414
+ - type: ndcg_at_1
2415
+ value: 18.367
2416
+ - type: ndcg_at_10
2417
+ value: 17.471999999999998
2418
+ - type: ndcg_at_100
2419
+ value: 29.341
2420
+ - type: ndcg_at_1000
2421
+ value: 41.005
2422
+ - type: ndcg_at_3
2423
+ value: 14.64
2424
+ - type: ndcg_at_5
2425
+ value: 17.039
2426
+ - type: precision_at_1
2427
+ value: 20.408
2428
+ - type: precision_at_10
2429
+ value: 17.551
2430
+ - type: precision_at_100
2431
+ value: 6.673
2432
+ - type: precision_at_1000
2433
+ value: 1.4160000000000001
2434
+ - type: precision_at_3
2435
+ value: 14.966
2436
+ - type: precision_at_5
2437
+ value: 18.776
2438
+ - type: recall_at_1
2439
+ value: 1.672
2440
+ - type: recall_at_10
2441
+ value: 12.795000000000002
2442
+ - type: recall_at_100
2443
+ value: 41.289
2444
+ - type: recall_at_1000
2445
+ value: 76.947
2446
+ - type: recall_at_3
2447
+ value: 3.334
2448
+ - type: recall_at_5
2449
+ value: 6.864000000000001
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 69.3424
2461
+ - type: ap
2462
+ value: 13.45149708639965
2463
+ - type: f1
2464
+ value: 53.278180518373574
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 57.60045274476513
2476
+ - type: f1
2477
+ value: 57.9395926195531
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 36.649067825169446
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 83.68599868868093
2500
+ - type: cos_sim_ap
2501
+ value: 65.7938550603812
2502
+ - type: cos_sim_f1
2503
+ value: 61.81946735800141
2504
+ - type: cos_sim_precision
2505
+ value: 55.85604770017035
2506
+ - type: cos_sim_recall
2507
+ value: 69.2084432717678
2508
+ - type: dot_accuracy
2509
+ value: 82.09453418370389
2510
+ - type: dot_ap
2511
+ value: 61.00867337905922
2512
+ - type: dot_f1
2513
+ value: 58.56196783349101
2514
+ - type: dot_precision
2515
+ value: 53.06472353193313
2516
+ - type: dot_recall
2517
+ value: 65.32981530343008
2518
+ - type: euclidean_accuracy
2519
+ value: 83.68599868868093
2520
+ - type: euclidean_ap
2521
+ value: 66.17065796133883
2522
+ - type: euclidean_f1
2523
+ value: 62.440610152538135
2524
+ - type: euclidean_precision
2525
+ value: 59.3393536121673
2526
+ - type: euclidean_recall
2527
+ value: 65.88390501319262
2528
+ - type: manhattan_accuracy
2529
+ value: 83.57870894677237
2530
+ - type: manhattan_ap
2531
+ value: 65.89925640001532
2532
+ - type: manhattan_f1
2533
+ value: 62.2255119664446
2534
+ - type: manhattan_precision
2535
+ value: 58.43373493975904
2536
+ - type: manhattan_recall
2537
+ value: 66.54353562005278
2538
+ - type: max_accuracy
2539
+ value: 83.68599868868093
2540
+ - type: max_ap
2541
+ value: 66.17065796133883
2542
+ - type: max_f1
2543
+ value: 62.440610152538135
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.68579966623976
2555
+ - type: cos_sim_ap
2556
+ value: 83.2666595805096
2557
+ - type: cos_sim_f1
2558
+ value: 75.11536297129996
2559
+ - type: cos_sim_precision
2560
+ value: 73.24943294065999
2561
+ - type: cos_sim_recall
2562
+ value: 77.07884200800738
2563
+ - type: dot_accuracy
2564
+ value: 86.76213761788334
2565
+ - type: dot_ap
2566
+ value: 80.85199640255004
2567
+ - type: dot_f1
2568
+ value: 73.27634898520165
2569
+ - type: dot_precision
2570
+ value: 71.70756872282409
2571
+ - type: dot_recall
2572
+ value: 74.91530643671081
2573
+ - type: euclidean_accuracy
2574
+ value: 87.79640625606395
2575
+ - type: euclidean_ap
2576
+ value: 83.52666327503474
2577
+ - type: euclidean_f1
2578
+ value: 75.37022886875523
2579
+ - type: euclidean_precision
2580
+ value: 71.4522249051397
2581
+ - type: euclidean_recall
2582
+ value: 79.74283954419464
2583
+ - type: manhattan_accuracy
2584
+ value: 87.80804905499282
2585
+ - type: manhattan_ap
2586
+ value: 83.4995899990913
2587
+ - type: manhattan_f1
2588
+ value: 75.44320420223242
2589
+ - type: manhattan_precision
2590
+ value: 71.68307223069458
2591
+ - type: manhattan_recall
2592
+ value: 79.6196489066831
2593
+ - type: max_accuracy
2594
+ value: 87.80804905499282
2595
+ - type: max_ap
2596
+ value: 83.52666327503474
2597
+ - type: max_f1
2598
+ value: 75.44320420223242
2599
+ ---