metadata
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: S2_M1_R3_swint_42507052
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.996607294317218
S2_M1_R3_swint_42507052
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0177
- Accuracy: 0.9966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0359 | 0.99 | 73 | 0.0208 | 0.9949 |
0.0209 | 1.99 | 147 | 0.0115 | 0.9975 |
0.0088 | 3.0 | 221 | 0.0281 | 0.9958 |
0.0029 | 4.0 | 295 | 0.0185 | 0.9958 |
0.0002 | 4.95 | 365 | 0.0177 | 0.9966 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu102
- Datasets 2.16.0
- Tokenizers 0.15.0