--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S2_M1_R3_swint_42507052 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.996607294317218 --- # S2_M1_R3_swint_42507052 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 - Accuracy: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0359 | 0.99 | 73 | 0.0208 | 0.9949 | | 0.0209 | 1.99 | 147 | 0.0115 | 0.9975 | | 0.0088 | 3.0 | 221 | 0.0281 | 0.9958 | | 0.0029 | 4.0 | 295 | 0.0185 | 0.9958 | | 0.0002 | 4.95 | 365 | 0.0177 | 0.9966 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0