bert_large_cnn_daily2

This model is a fine-tuned version of alexdg19/bert_large_cnn_daily on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3008
  • Rouge1: 0.4504
  • Rouge2: 0.2337
  • Rougel: 0.3294
  • Rougelsum: 0.424
  • Gen Len: 60.2728

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1882 1.0 1021 1.1904 0.4379 0.223 0.318 0.41 61.3551
0.9513 2.0 2042 1.1891 0.4506 0.2353 0.3312 0.4239 59.6771
0.7581 3.0 3064 1.2440 0.4488 0.2317 0.3273 0.4214 59.9909
0.6364 4.0 4084 1.3008 0.4504 0.2337 0.3294 0.424 60.2728

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
3
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alexdg19/bert_large_cnn_daily2

Dataset used to train alexdg19/bert_large_cnn_daily2

Evaluation results