bert_large_xsum_samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9030
  • Rouge1: 0.5083
  • Rouge2: 0.2528
  • Rougel: 0.41
  • Rougelsum: 0.4105
  • Gen Len: 29.0183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 41 1.6008 0.4779 0.2349 0.4058 0.4056 21.1037
No log 2.0 82 1.5804 0.5104 0.2526 0.4242 0.4239 24.689
No log 3.0 123 1.7310 0.5148 0.253 0.4162 0.4155 28.0793
No log 4.0 164 1.7974 0.5019 0.2443 0.4127 0.4125 25.189
No log 5.0 205 1.9030 0.5083 0.2528 0.41 0.4105 29.0183

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
4
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alexdg19/bert_large_xsum_samsum

Finetuned
(50)
this model
Finetunes
2 models

Dataset used to train alexdg19/bert_large_xsum_samsum

Evaluation results