anton-l's picture
anton-l HF staff
Upload README.md
3155938
---
language: th
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
- speech
- xlsr-fine-tuning
license: cc-by-sa-4.0
model-index:
- name: XLS-R-53 - Thai
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: th
metrics:
- name: Test WER
type: wer
value: 0.9524
- name: Test SER
type: ser
value: 1.2346
- name: Test CER
type: cer
value: 0.1623
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sv
metrics:
- name: Test WER
type: wer
value: null
- name: Test SER
type: ser
value: null
- name: Test CER
type: cer
value: null
---
# `wav2vec2-large-xlsr-53-th`
Finetuning `wav2vec2-large-xlsr-53` on Thai [Common Voice 7.0](https://commonvoice.mozilla.org/en/datasets)
[Read more on our blog](https://medium.com/airesearch-in-th/airesearch-in-th-3c1019a99cd)
We finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) based on [Fine-tuning Wav2Vec2 for English ASR](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tuning_Wav2Vec2_for_English_ASR.ipynb) using Thai examples of [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets). The notebooks and scripts can be found in [vistec-ai/wav2vec2-large-xlsr-53-th](https://github.com/vistec-ai/wav2vec2-large-xlsr-53-th). The pretrained model and processor can be found at [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th).
## `robust-speech-event`
Add `syllable_tokenize`, `word_tokenize` ([PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)) and [deepcut](https://github.com/rkcosmos/deepcut) tokenizers to `eval.py` from [robust-speech-event](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#evaluation)
```
> python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer
```
### Eval results on Common Voice 7 "test":
| | WER PyThaiNLP 2.3.1 | WER deepcut | SER | CER |
|---------------------------------|---------------------|-------------|---------|---------|
| Only Tokenization | 0.9524% | 2.5316% | 1.2346% | 0.1623% |
| Cleaning rules and Tokenization | TBD | TBD | TBD | TBD |
## Usage
```
#load pretrained processor and model
processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")
model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")
#function to resample to 16_000
def speech_file_to_array_fn(batch,
text_col="sentence",
fname_col="path",
resampling_to=16000):
speech_array, sampling_rate = torchaudio.load(batch[fname_col])
resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to)
batch["speech"] = resampler(speech_array)[0].numpy()
batch["sampling_rate"] = resampling_to
batch["target_text"] = batch[text_col]
return batch
#get 2 examples as sample input
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
#infer
with torch.no_grad():
logits = model(inputs.input_values,).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
>> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว']
>> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว']
```
## Datasets
Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with `pythainlp.tokenize.word_tokenize`. We preprocess the dataset using cleaning rules described in `notebooks/cv-preprocess.ipynb` by [@tann9949](https://github.com/tann9949). We then deduplicate and split as described in [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) in order to 1) avoid data leakage due to random splits after cleaning in [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) and 2) preserve the majority of the data for the training set. The dataset loading script is `scripts/th_common_voice_70.py`. You can use this scripts together with `train_cleand.tsv`, `validation_cleaned.tsv` and `test_cleaned.tsv` to have the same splits as we do. The resulting dataset is as follows:
```
DatasetDict({
train: Dataset({
features: ['path', 'sentence'],
num_rows: 86586
})
test: Dataset({
features: ['path', 'sentence'],
num_rows: 2502
})
validation: Dataset({
features: ['path', 'sentence'],
num_rows: 3027
})
})
```
## Training
We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is `scripts/wav2vec2_finetune.py`
```
# create model
model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-large-xlsr-53",
attention_dropout=0.1,
hidden_dropout=0.1,
feat_proj_dropout=0.0,
mask_time_prob=0.05,
layerdrop=0.1,
gradient_checkpointing=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer)
)
model.freeze_feature_extractor()
training_args = TrainingArguments(
output_dir="../data/wav2vec2-large-xlsr-53-thai",
group_by_length=True,
per_device_train_batch_size=32,
gradient_accumulation_steps=1,
per_device_eval_batch_size=16,
metric_for_best_model='wer',
evaluation_strategy="steps",
eval_steps=1000,
logging_strategy="steps",
logging_steps=1000,
save_strategy="steps",
save_steps=1000,
num_train_epochs=100,
fp16=True,
learning_rate=1e-4,
warmup_steps=1000,
save_total_limit=3,
report_to="tensorboard"
)
```
## Evaluation
We benchmark on the test set using WER with words tokenized by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) 2.3.1 and [deepcut](https://github.com/rkcosmos/deepcut), and CER. We also measure performance when spell correction using [TNC](http://www.arts.chula.ac.th/ling/tnc/) ngrams is applied. Evaluation codes can be found in `notebooks/wav2vec2_finetuning_tutorial.ipynb`. Benchmark is performed on `test-unique` split.
| | WER PyThaiNLP 2.3.1 | WER deepcut | CER |
|--------------------------------|---------------------|----------------|----------------|
| [Kaldi from scratch](https://github.com/vistec-AI/commonvoice-th) | 23.04 | | 7.57 |
| Ours without spell correction | 13.634024 | **8.152052** | **2.813019** |
| Ours with spell correction | 17.996397 | 14.167975 | 5.225761 |
| Google Web Speech API※ | 13.711234 | 10.860058 | 7.357340 |
| Microsoft Bing Speech API※ | **12.578819** | 9.620991 | 5.016620 |
| Amazon Transcribe※ | 21.86334 | 14.487553 | 7.077562 |
| NECTEC AI for Thai Partii API※ | 20.105887 | 15.515631 | 9.551027 |
※ APIs are not finetuned with Common Voice 7.0 data
## LICENSE
[cc-by-sa 4.0](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th/blob/main/LICENSE)
## Ackowledgements
* model training and validation notebooks/scripts [@cstorm125](https://github.com/cstorm125/)
* dataset cleaning scripts [@tann9949](https://github.com/tann9949)
* dataset splits [@ekapolc](https://github.com/ekapolc/) and [@14mss](https://github.com/14mss)
* running the training [@mrpeerat](https://github.com/mrpeerat)
* spell correction [@wannaphong](https://github.com/wannaphong)