File size: 8,638 Bytes
c7ca823
 
 
 
 
 
e183b88
3155938
 
 
e183b88
00a4e4b
f231c44
e9a4535
f231c44
7f5d9d9
 
f231c44
 
 
 
 
 
7f5d9d9
 
 
 
 
 
 
 
 
 
f231c44
 
 
 
 
 
 
7f5d9d9
 
 
 
 
 
 
 
 
c7ca823
 
cbc9d72
 
 
93fbdd3
 
cbc9d72
 
71ded5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc9d72
 
 
 
fc2a52a
 
cbc9d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82bd96
cbc9d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27ad5f2
 
 
 
dfc08ec
 
 
 
 
 
 
9833d26
 
 
f199e21
 
 
 
f82bd96
 
 
bd9af21
f82bd96
 
cbc9d72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
language: th
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
- speech
- xlsr-fine-tuning
license: cc-by-sa-4.0
model-index:
- name: XLS-R-53 - Thai
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: th
    metrics:
    - name: Test WER
      type: wer
      value: 0.9524
    - name: Test SER
      type: ser
      value: 1.2346
    - name: Test CER
      type: cer
      value: 0.1623
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
    - name: Test WER
      type: wer
      value: null
    - name: Test SER
      type: ser
      value: null
    - name: Test CER
      type: cer
      value: null
---

# `wav2vec2-large-xlsr-53-th`
Finetuning `wav2vec2-large-xlsr-53` on Thai [Common Voice 7.0](https://commonvoice.mozilla.org/en/datasets)

[Read more on our blog](https://medium.com/airesearch-in-th/airesearch-in-th-3c1019a99cd)

We finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) based on [Fine-tuning Wav2Vec2 for English ASR](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tuning_Wav2Vec2_for_English_ASR.ipynb) using Thai examples of [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets). The notebooks and scripts can be found in [vistec-ai/wav2vec2-large-xlsr-53-th](https://github.com/vistec-ai/wav2vec2-large-xlsr-53-th). The pretrained model and processor can be found at [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th).

## `robust-speech-event`

Add `syllable_tokenize`, `word_tokenize` ([PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)) and [deepcut](https://github.com/rkcosmos/deepcut) tokenizers to `eval.py` from [robust-speech-event](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#evaluation)

```
> python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer
```

### Eval results on Common Voice 7 "test":

|                                 | WER PyThaiNLP 2.3.1 | WER deepcut | SER     | CER     |
|---------------------------------|---------------------|-------------|---------|---------|
| Only Tokenization               | 0.9524%             | 2.5316%     | 1.2346% | 0.1623% |
| Cleaning rules and Tokenization | TBD                 | TBD         | TBD     | TBD     |


## Usage

```
#load pretrained processor and model
processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")
model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")

#function to resample to 16_000
def speech_file_to_array_fn(batch, 
                            text_col="sentence", 
                            fname_col="path",
                            resampling_to=16000):
    speech_array, sampling_rate = torchaudio.load(batch[fname_col])
    resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to)
    batch["speech"] = resampler(speech_array)[0].numpy()
    batch["sampling_rate"] = resampling_to
    batch["target_text"] = batch[text_col]
    return batch

#get 2 examples as sample input
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

#infer
with torch.no_grad():
    logits = model(inputs.input_values,).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

>> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว']
>> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว']
```

## Datasets

Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with `pythainlp.tokenize.word_tokenize`. We preprocess the dataset using cleaning rules described in `notebooks/cv-preprocess.ipynb` by [@tann9949](https://github.com/tann9949). We then deduplicate and split as described in [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) in order to 1) avoid data leakage due to random splits after cleaning in [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) and 2) preserve the majority of the data for the training set. The dataset loading script is `scripts/th_common_voice_70.py`. You can use this scripts together with `train_cleand.tsv`, `validation_cleaned.tsv` and `test_cleaned.tsv` to have the same splits as we do. The resulting dataset is as follows:

```
DatasetDict({
    train: Dataset({
        features: ['path', 'sentence'],
        num_rows: 86586
    })
    test: Dataset({
        features: ['path', 'sentence'],
        num_rows: 2502
    })
    validation: Dataset({
        features: ['path', 'sentence'],
        num_rows: 3027
    })
})
```

## Training

We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is `scripts/wav2vec2_finetune.py`

```
# create model
model = Wav2Vec2ForCTC.from_pretrained(
    "facebook/wav2vec2-large-xlsr-53",
    attention_dropout=0.1,
    hidden_dropout=0.1,
    feat_proj_dropout=0.0,
    mask_time_prob=0.05,
    layerdrop=0.1,
    gradient_checkpointing=True,
    ctc_loss_reduction="mean",
    pad_token_id=processor.tokenizer.pad_token_id,
    vocab_size=len(processor.tokenizer)
)
model.freeze_feature_extractor()
training_args = TrainingArguments(
    output_dir="../data/wav2vec2-large-xlsr-53-thai",
    group_by_length=True,
    per_device_train_batch_size=32,
    gradient_accumulation_steps=1,
    per_device_eval_batch_size=16,
    metric_for_best_model='wer',
    evaluation_strategy="steps",
    eval_steps=1000,
    logging_strategy="steps",
    logging_steps=1000,
    save_strategy="steps",
    save_steps=1000,
    num_train_epochs=100,
    fp16=True,
    learning_rate=1e-4,
    warmup_steps=1000,
    save_total_limit=3,
    report_to="tensorboard"
)
```

## Evaluation

We benchmark on the test set using WER with words tokenized by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) 2.3.1 and [deepcut](https://github.com/rkcosmos/deepcut), and CER. We also measure performance when spell correction using [TNC](http://www.arts.chula.ac.th/ling/tnc/) ngrams is applied. Evaluation codes can be found in `notebooks/wav2vec2_finetuning_tutorial.ipynb`. Benchmark is performed on `test-unique` split.

|                                | WER PyThaiNLP 2.3.1 | WER deepcut    | CER            |
|--------------------------------|---------------------|----------------|----------------|
| [Kaldi from scratch](https://github.com/vistec-AI/commonvoice-th)         | 23.04              |                | 7.57         |
| Ours without spell correction  | 13.634024          | **8.152052** | **2.813019** |
| Ours with spell correction     | 17.996397          | 14.167975     | 5.225761     |
| Google Web Speech API※         | 13.711234          | 10.860058     | 7.357340     |
| Microsoft Bing Speech API※     | **12.578819**      | 9.620991     | 5.016620     |
| Amazon Transcribe※             | 21.86334           | 14.487553     | 7.077562     |
| NECTEC AI for Thai Partii API※ | 20.105887          | 15.515631     | 9.551027     |

※ APIs are not finetuned with Common Voice 7.0 data

## LICENSE

[cc-by-sa 4.0](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th/blob/main/LICENSE)

## Ackowledgements
* model training and validation notebooks/scripts [@cstorm125](https://github.com/cstorm125/)
* dataset cleaning scripts [@tann9949](https://github.com/tann9949)
* dataset splits [@ekapolc](https://github.com/ekapolc/) and [@14mss](https://github.com/14mss)
* running the training [@mrpeerat](https://github.com/mrpeerat)
* spell correction [@wannaphong](https://github.com/wannaphong)