|
--- |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: abhinand/dr-llama-te-instruct-v0 |
|
model-index: |
|
- name: dr-llama-te-instruct-v0-lora-ext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.3.0` |
|
```yaml |
|
base_model: abhinand/dr-llama-te-instruct-v0 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
trust_remote_code: true |
|
is_llama_derived_model: true |
|
|
|
# huggingface repo |
|
datasets: |
|
- path: abhinand/telugu_llama_instruct |
|
name: regional_sharegpt_gs8 |
|
type: sharegpt.load_role |
|
conversation: chatml |
|
train_on_split: train |
|
|
|
- path: abhinand/detox-dpo-te |
|
name: sharegpt_gs8 |
|
type: sharegpt.load_role |
|
conversation: chatml |
|
train_on_split: train |
|
|
|
load_in_4bit: false |
|
load_in_8bit: false |
|
bf16: true # require >=ampere |
|
chat_template: chatml |
|
|
|
dataset_prepared_path: last_run_prepared_path |
|
hub_model_id: abhinand/dr-llama-te-instruct-v0-lora-ext |
|
group_by_length: false |
|
|
|
val_set_size: 0.0 |
|
sequence_len: 4096 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 64 |
|
lora_alpha: 128 |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
lora_dropout: 0.1 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
output_dir: /home/dev/axolotl/saved_models/telugu-instruct-extended |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 4 |
|
eval_batch_size: 4 |
|
num_epochs: 1 |
|
logging_steps: 1 |
|
save_steps: 10 |
|
save_total_limit: 3 |
|
|
|
save_safetensors: false |
|
gradient_checkpointing: true |
|
|
|
lr_scheduler: cosine |
|
optimizer: "adamw_bnb_8bit" |
|
adam_beta2: 0.95 |
|
adam_epsilon: 0.00001 |
|
weight_decay: 0.1 |
|
learning_rate: 0.0005 |
|
max_grad_norm: 1.0 |
|
warmup_ratio: 0.05 |
|
# warmup_steps: 10 |
|
|
|
flash_attention: true |
|
|
|
# Resume from a specific checkpoint dir |
|
resume_from_checkpoint: |
|
# If resume_from_checkpoint isn't set and you simply want it to start where it left off. |
|
# Be careful with this being turned on between different models. |
|
# auto_resume_from_checkpoints: true |
|
|
|
# wandb configuration if you're using it |
|
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`. |
|
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb |
|
wandb_project: "telugu-llama-sft" |
|
wandb_name: |
|
wandb_run_id: |
|
|
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
tokens: # these are delimiters |
|
- "<|im_start|>" |
|
- "<|im_end|>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# dr-llama-te-instruct-v0-lora-ext |
|
|
|
This model is a fine-tuned version of [abhinand/dr-llama-te-instruct-v0](https://huggingface.co/abhinand/dr-llama-te-instruct-v0) on the None dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 3 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |